1、k近邻算法可以说是唯一一个没有训练过程的机器学习算法,它含有训练基础数据集,但是是一种没有模型的算法,为了将其和其他算法进行统一,我们把它的训练数据集当做它的模型本身。
2、在scikitlearn中调用KNN算法的操作步骤如下(利用实际例子举例如下):
#1导入相应的数据可视化模块
import numpy as np
import matplotlib.pyplot as plt
#2输入训练的数据集x_train、y_train
raw_data_X=[[3.393533211,2.331273381],
[3.110073483,1.781539638],
[1.343808831,3.368360954],
[3.582294042,4.679179110],
[2.280362439,2.866990263],
[7.423436942,4.696522875],
[5.745051997,3.533989803],
[9.172168622,2.511101045],
[7.792783481,3.424088941],
[7.939820817,0.791637231]]
raw_data_Y=[0,0,0,0,0,1,1,1,1,1]
x_train=np.array(raw_data_X)
y_train=np.array(raw_data_Y)
x=np.array([8.093607318,3.365731514])
#特别注意:scilearn模块里面验证数据都将默认为二维数据,如果不是,则需要使用.reshape(1,-1)函数对其进行转换
#3从scikitlearn库中调用相应的机器学习算法
from sklearn.neighbors import KNeighborsClassifier #调用算法库
KNN_classifier=KNeighborsClassifier(n_neighbors=6) #定义新的算法
KNN_classifier.fit(x_train,y_train) #基础数据训练模型
#4导入测试的数据集test_data和test_target
test_data1=[[3.93533211,2.33127381],
[3.10073483,1.78159638],
[1.34808831,3.36830954],
[3.58294042,4.67919110],
[2.28032439,2.86690263],
[7.42343942,4.69652875],
[5.74505997,3.53399803],
[9.17216622,2.51101045],
[7.79278481,3.42488941],
[7.93982087,0.79637231]]
test_data=np.array(test_data1)
test_target=[0,0,0,0,1,1,0,0,0,0]
x=x.reshape(1,-1)
print(KNN_classifier.predict(x))
y_pred=KNN_classifier.predict(test_data) #对测试数据进行预测
#5对于算法的准确度进行输出和评估(准确度和混淆矩阵)
from sklearn import metrics #引入机器学习的验证模块
print(metrics.accuracy_score(y_true=test_target,y_pred=y_pred)) #输出整体预测结果的准确率,其中第三个参数normalize=False表示输出结果预测正确的个数
print(metrics.confusion_matrix(y_true=test_target,y_pred=y_pred)) #输出混淆矩阵,如果为对角阵,则表示预测结果是正确的,准确度越大

3、从scikitlearn库中调用相应的机器学习算法的步骤如下:
(1)从scikitlearn库中调用相应的机器学习算法模块;
(2)输入相应的算法参数定义一个新的算法;
(3)输入基础训练数据集进行训练;
(4)输入测试数据集对其结果进行预测;
(5)将预测结果与真实结果进行对比,输出其算法的准确率(或者混淆矩阵)
4、对于机器学习算法的准确度评价主要有以下几种方式:
(1)利用scikitlearn中的accuracy函数:
from sklearn import metrics #引入机器学习的验证模块
print(metrics.accuracy_score(y_true=y_test,y_pred=y_pred)) #输出整体预测结果的准确率,其中第三个参数normalize=False表示输出结果预测正确的个数
print(metrics.confusion_matrix(y_true=y_test,y_pred=y_pred)) #输出混淆矩阵,如果为对角阵,则表示预测结果是正确的,准确度越大
(2)直接利用机器学习算法中的.score(X,y)函数输出算法的准确度
其中X表示数据的测试集(x_test),y代表真实目标值(y_test)

scikitlearn库中调用k-近邻算法的操作步骤的更多相关文章

  1. Asp.net页面中调用soapheader进行验证的操作步骤

    Asp.net页面中调用以SOAP头作验证的web services操作步骤 第一步:用来作SOAP验证的类必须从SoapHeader类派生,类中Public的属性将出现在自动产生XML节点中,即: ...

  2. GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用

    最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...

  3. 机器学习:k-NN算法(也叫k近邻算法)

    一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...

  4. 02-16 k近邻算法

    目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...

  5. 1.K近邻算法

    (一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以 ...

  6. 02-18 scikit-learn库之k近邻算法

    目录 scikit-learn库之k近邻算法 一.KNeighborsClassifier 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 方法 1.4.1 kneighbors([X, n ...

  7. 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)

    数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系 ...

  8. 【笔记】KNN之网格搜索与k近邻算法中更多超参数

    网格搜索与k近邻算法中更多超参数 网格搜索与k近邻算法中更多超参数 网络搜索 前笔记中使用的for循环进行的网格搜索的方式,我们可以发现不同的超参数之间是存在一种依赖关系的,像是p这个超参数,只有在 ...

  9. 机器学习算法之K近邻算法

    0x00 概述   K近邻算法是机器学习中非常重要的分类算法.可利用K近邻基于不同的特征提取方式来检测异常操作,比如使用K近邻检测Rootkit,使用K近邻检测webshell等. 0x01 原理   ...

随机推荐

  1. Python 基础之面向对象之异常处理

    一.认识异常 1.常用异常报错的错误类型 IndexError                索引超出序列的范围 KeyError                  字典中查找一个不存在的关键字 Na ...

  2. SpringBoot与Jpa入门

    一.JPA简介 目前JPA主要实现由hibernate和openJPA等. Spring Data JPA 是Spring Data 的一个子项目,它通过提供基于JPA的Repository极大了减少 ...

  3. C#Winfrom实现Skyline画直线功能

    C#Winfrom实现Skyline画直线功能 前言: 这里记录了我在学习Skyline二次开发中所遇到的问题,适合刚接触Skyline二次开发的同学查看使用,从逻辑到代码逐一详解,但是还是重在理解, ...

  4. LeetCode刷题--26.删除排序数组中的重复项(简单)

    题目描述 给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度.不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(1)额外空间的条件下完成. 示例 ...

  5. JAVA版StarDict星际译王简单实现

    由胡正开发的星际译王是Linux平台上很强大的一个开源的翻译软件(也有Windows版本的)支持多种词库.多种语言版本.尤其词库设计比较合理.之前看到一篇博文<星际译王词库应用-自制英汉词典&g ...

  6. 获取SDWebImage的缓存大小并清除

    // 获取SDWebImage的缓存大小 - (NSString *)cacheSizeFormat { NSString *sizeUnitString; float size = [SDWebIm ...

  7. topthink/think-swoole 扩展包的使用 之 Task

    本想自己适配的,奈何keng貌似不少,所以果断选择官方提供的包来适配233... 默认条件:thinkphp5.1.*版本下,且安装了swoole扩展 主要演示:task 任务的投递 友情提示:在sw ...

  8. Django: 页面设计,实现验证码刷新

    之前以为一定要用ajax实现,其实是不用的 改动img的src就行,但两次的src是不能一样的. 所以我是这么实现的: <script> 'use strict'; function re ...

  9. jQuery EasyUI window窗口实例

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>j ...

  10. MariaDB——数据库基础与sql语句

    数据库介绍 什么是数据库? 简单的说,数据库就是一个存放数据的仓库,这个仓库是按照一定的数据结构(数据结构是指数据的组织形式或数据之间的联系)来组织,存储的,我们可以通过数据库提供的多种方法来管理数据 ...