足球游戏论坛数据分析--简单粗暴的K均值聚类
在<<足球游戏论坛数据分析--简单粗暴的贝叶斯>>中尝试了贴标签后,一直觉得结果无法接受, 慢慢回想, 其实选择的算法是错误的,原因有
- 论坛帖子分类并非就是PC/PS/XBOX这么简单
- 即使是作者自己贴的标签,也存在挂羊头的可能性
既然没法简单的给帖子分类,那么就尝试一下聚类算法看看有没有发现:
#事先已经把分好词的所有文本存成一个文件,没有事先分类
f = codecs.open('forum_all.txt', 'r', 'utf-8')
words_full = f.readlines()
f.close() true_k = 5 #事先预设分成5类 vectorizer = TfidfVectorizer(max_df=0.5, max_features=1000,
min_df=2)
transformer = TfidfTransformer()
td = vectorizer.fit_transform(words_full)
tfidf = transformer.fit_transform(td)
word = np.array(vectorizer.get_feature_names())
km = KMeans(n_clusters=true_ke, init='k-means++', max_iter=200, n_init=1)
km.fit(td)
print(u"Silhouette Coefficient(轮廓系数): %0.3f"
% metrics.silhouette_score(td, km.labels_, sample_size=5000))
order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_ke): #输出每个分类头10个特征词
for ind in order_centroids[i, :10]:
print ' %s' % terms[ind],
print ''
运行结果
Silhouette Coefficient(轮廓系数): 0.137
Cluster 0: 1634 posts
显卡 识别 独立 安装 如何 方法 教程 最后 破解版 reloaded
Cluster 1: 4388 posts
2014 evolution soccer 推荐 pro 论坛 首发 dlc3 下载 破解版
Cluster 2: 1677 posts
汇总 资源 dlc6 22 10 更新 pes2014 分享 谢谢 支持
Cluster 3: 7872 posts
wecn 发布 正式 pes2016 patch v2 简体中文 汉化 v1 补丁
Cluster 4: 11287 posts
pes2014 疑难解答 补丁 更新 球员 10 球场 分享 pes2016 谢谢
从这个分类结果来看,我抓取的论坛板块主要讨论的是:
- 能/爽玩游戏的电脑配置, 即PC版游戏
- "你懂的"游戏用户还是不少,正版化依然任重而道远
- 过半数的讨论(分类3和4)是游戏的各路补丁,老司机都知道,在版权问题这个点上,FIFA无敌
- 颇为意外的是, 2014/2016竟然是热门版本, 2015毫无存在感
- 我现在有点怀疑我的爬虫花了大量时间在扒PC板块的帖子 -_-b
PS, 分类数5其实只是个随便定下的值. 之所以最终选5, 只是在测试了从3到12的分类后, 发现轮廓系数在5开始步入稳定状态,提升不大.
最后,附上个特征向量经降维后作的分类散点图
足球游戏论坛数据分析--简单粗暴的K均值聚类的更多相关文章
- 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...
- 【转】算法杂货铺——k均值聚类(K-means)
k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...
- 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...
- 机器学习理论与实战(十)K均值聚类和二分K均值聚类
接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...
- K均值聚类
聚类(cluster)与分类的不同之处在于, 分类算法训练过程中样本所属的分类是已知的属监督学习. 而聚类算法不需要带有分类的训练数据,而是根据样本特征的相似性将其分为几类,又称为无监督分类. K均值 ...
- 探索sklearn | K均值聚类
1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征 ...
- 机器学习之K均值聚类
聚类的核心概念是相似度或距离,有很多相似度或距离的方法,比如欧式距离.马氏距离.相关系数.余弦定理.层次聚类和K均值聚类等 1. K均值聚类思想 K均值聚类的基本思想是,通过迭代的方法寻找K个 ...
- k均值聚类算法原理和(TensorFlow)实现
顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...
- 聚类之K均值聚类和EM算法
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...
随机推荐
- 1Z0-053 争议题目解析685
1Z0-053 争议题目解析685 考试科目:1Z0-053 题库版本:V13.02 题库中原题为: 685.In your test database: -You are using Recover ...
- MySQL学习(一)MySQLWorkbench(MySQL可视化工具)下载,安装,测试连接,以及注意事项
PS:MySQLWorkbench是MYSQL自带的可视化工具,无论使用哪个可视化工具,其实大同小异,如果想以后走的更远的话,可以考虑使用命令行操作数据库MYSQL.可视化工具让我们初学者更能理解数据 ...
- lamp 环境搭建
LAMP指的Linux(操作系统).ApacheHTTP 服务器,MySQL(数据库软件)和PHP语言 使用wampserver软件,搭建环境.如下图: 双击程序包,安装最后一步随便选择一个浏览器打开 ...
- RadioGroup、RadioButton、CheckBox、Toast用法
xml布局文件如下: <RadioGroup android:id="@+id/sex" android:layout_width="wrap_content&qu ...
- 再看ftp上传文件
前言 去年在项目中用到ftp上传文件,用FtpWebRequest和FtpWebResponse封装一个帮助类,这个在网上能找到很多,前台使用Uploadify控件,然后在服务器上搭建Ftp服务器,在 ...
- CQRS, Task Based UIs, Event Sourcing agh!
原文地址:CQRS, Task Based UIs, Event Sourcing agh! Many people have been getting confused over what CQRS ...
- MySQL如何利用索引优化ORDER BY排序语句
MySQL索引通常是被用于提高WHERE条件的数据行匹配或者执行联结操作时匹配其它表的数据行的搜索速度. MySQL也能利用索引来快速地执行ORDER BY和GROUP BY语句的排序和分组操作. 通 ...
- Winform分页控件
设计界面: 控件代码: using System; using System.Collections.Generic; using System.ComponentModel; using Syste ...
- SQL Server 2005 数据库 可疑状态
KJDY数据库名称 ALTER DATABASE KJDY SET EMERGENCY ---修改数据库为 紧急模式 ALTER DATABASE KJDY SET SINGLE_USER ---单用 ...
- jQuery仿阿里云购买选择购买时间长度
效果:http://hovertree.com/texiao/jquery/61/ jQuery仿阿里云购买服务器选择时间长度,操作简单,只需点击所要选的时间段 代码: <!doctype ht ...