Gold Balanced Lineup
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 13540   Accepted: 3941

Description

Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow down the list of features shared by his cows to a list of only K different features (1 ≤ K ≤ 30). For example, cows exhibiting
feature #1 might have spots, cows exhibiting feature #2 might prefer C to Pascal, and so on.

FJ has even devised a concise way to describe each cow in terms of its "feature ID", a single K-bit integer whose binary representation tells us the set of features exhibited by the cow. As an example, suppose a cow has feature ID = 13. Since 13 written
in binary is 1101, this means our cow exhibits features 1, 3, and 4 (reading right to left), but not feature 2. More generally, we find a 1 in the 2^(i-1) place if a cow exhibits feature i.

Always the sensitive fellow, FJ lined up cows 1..N in a long row and noticed that certain ranges of cows are somewhat "balanced" in terms of the features the exhibit. A contiguous range of cows i..j is balanced if each of the K possible
features is exhibited by the same number of cows in the range. FJ is curious as to the size of the largest balanced range of cows. See if you can determine it.

Input

Line 1: Two space-separated integers, N and K

Lines 2..N+1: Line i+1 contains a single K-bit integer specifying the features present in cow i. The least-significant bit of this integer is 1 if the cow exhibits feature #1, and the most-significant bit is 1 if the cow
exhibits feature #K.

Output

Line 1: A single integer giving the size of the largest contiguous balanced group of cows.

Sample Input

7 3
7
6
7
2
1
4
2

Sample Output

4

Hint

In the range from cow #3 to cow #6 (of size 4), each feature appears in exactly 2 cows in this range

这个题的题意好无厘头。。。

对于一个特征来说,每头牛有这个特征是为1,没有这个特征是为0。然后把每头牛的01串变成一个十进制的数。问找到一个最长的区间,满足这个区间内每一个特征含有的总数是相等的。

这个时候发现最大区间问题其中的一个思路就是哈希啊,之前求51nod
1393:0和1相等串
这个也是哈希。

然后这道题就是考虑各种情况吧,自己一头牛也可能是最大的区间。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#include <map>
#pragma warning(disable:4996)
using namespace std; int n, k;
int value[100005];
int val[100005][31]; int searc[100005];//看是否有冲突
vector<int>dic[100005]; int check(int i, int key)
{
int j, h, answer = 0;
for (j = 0; j < dic[searc[key]].size(); j++)
{
for (h = 2; h <= k; h++)
{
if ((val[dic[searc[key]][j]][h] - val[i][h]) != (val[dic[searc[key]][j]][h - 1] - val[i][h - 1]))
break;
}
if (h == k + 1)
{
if (i - dic[searc[key]][j] > answer)
{
answer = i - dic[searc[key]][j];
}
}
}
if (answer == 0)
{
dic[searc[key]].push_back(i);
}
return answer;
} int main()
{
//freopen("i.txt", "r", stdin);
//freopen("o.txt", "w", stdout); int i, ans, fea, key, dic_num, temp, temp2; scanf("%d%d", &n, &k); ans = 0;
dic_num = 0;
memset(searc,0,sizeof(searc)); for (i = 0; i < 31; i++)
{
val[0][i] = 0;
}
for (i = 1; i <= n; i++)
{
scanf("%d", &value[i]); key = 0;
fea = 1;
temp2 = value[i]; while (fea <= k)
{
val[i][fea] = (temp2 & 1) + val[i - 1][fea]; if (fea != 1) key += abs(val[i][fea] - val[i][fea - 1]);
fea++;
temp2 = temp2 >> 1;
}
if (value[i] == 0 || value[i] == pow(2.0, k) - 1)
{
ans = max(ans, 1);
}
if (key == 0)
{
ans = max(ans, i);
}
if (searc[key] == 0)
{
searc[key] = ++dic_num;
dic[dic_num].push_back(i);
}
else
{
temp = check(i, key);
if (temp > ans)
{
ans = temp;
}
}
}
cout << ans << endl; return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 3274:Gold Balanced Lineup 做了两个小时的哈希的更多相关文章

  1. POJ 3274 Gold Balanced Lineup

    Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10924 Accepted: 3244 ...

  2. poj 3274 Gold Balanced Lineup(哈希 )

    题目:http://poj.org/problem?id=3274 #include <iostream> #include<cstdio> #include<cstri ...

  3. POJ 3274 Gold Balanced Lineup(哈希)

    http://poj.org/problem?id=3274 题意 :农夫约翰的n(1 <= N <= 100000)头奶牛,有很多相同之处,约翰已经将每一头奶牛的不同之处,归纳成了K种特 ...

  4. POJ 3274 Gold Balanced Lineup 哈希,查重 难度:3

    Farmer John's N cows (1 ≤ N ≤ 100,000) share many similarities. In fact, FJ has been able to narrow ...

  5. 哈希-Gold Balanced Lineup 分类: POJ 哈希 2015-08-07 09:04 2人阅读 评论(0) 收藏

    Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13215 Accepted: 3873 ...

  6. 1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列

    1702: [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 510  S ...

  7. 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)

    P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...

  8. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  9. POJ 题目3264 Balanced Lineup(RMQ)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 39046   Accepted: 18291 ...

随机推荐

  1. php封装的mysqli类完整实例

    本文实例讲述了php封装的mysqli类.分享给大家供大家参考,具体如下:类: <?php header('content-type:text/html;charset=utf-8'); /* ...

  2. 「JSOI2014」序列维护

    「JSOI2014」序列维护 传送门 其实这题就是luogu的模板线段树2,之所以要发题解就是因为学到了一种比较NB的 \(\text{update}\) 的方式.(参见这题) 我们可以把修改操作统一 ...

  3. 「JLOI2012」树

    「JLOI2012」树 传送门 不得不说这题的数据是真的水... 我们可以想到很明确的一条思路:枚举每一个点向根节点跳,知道路径和不小于 \(s\),恰好等于 \(s\) 就直接加答案. 跳的过程可以 ...

  4. php 基础 获取远程连接

    1 file_get_contents get $opts = array( 'http'=>array( 'method'=>"GET", 'timeout'=> ...

  5. Django 学习之Django Rest Framework(DRF)

    一. WEB应用模式 在开发Web应用中,有两种应用模式 1. 前后端不分离 把html模板文件和django的模板语法结合渲染完成以后才从服务器返回给客户. 2. 前后端分离 二. API接口 AP ...

  6. Chrome 打不开任意网页以及设置、扩展程序等页面解决方法

    解决办法:在快捷键加启动参数 -no-sandbox,如果可以启动,就说明是电脑上有某个软件与Chrome沙盒有冲突

  7. HashMap与HashTable源码学习及效率比较分析

    一.个人学习后的见解: 首先表明学习源码后的个人见解,后续一次依次进行分析: 1.线程安全:HashMap是非线程安全的,HashTable是线程安全的(HashTable中使用了synchroniz ...

  8. 【原】linux设置网络延迟/丢包操作

    1.tc方式 * 清除设备策略:tc qdisc del root dev eth2 2>/dev/null* 设置设备策略:tc qdisc add dev eth0 root netem l ...

  9. 含有namespace的类型如何访问

    下图中包含的String类型,如果想要在别的文件中去访问的话: 1)需要include"ApiClient.hpp" 2)需要使用oatpp::web::client::ApiCl ...

  10. 31 反射方式给类的属性赋值 和 对象赋值(clone)

    1.配置类 package com.da.tool.util.configuration.reflect; /** */ public class JobInfo { private String j ...