概述:

Elasticsearch 是一个分布式、可扩展、实时的搜索与数据分析引擎。 它能从项目一开始就赋予你的数据以搜索、分析和探索的能力,这是通常没有预料到的。 它存在还因为原始数据如果只是躺在磁盘里面根本就毫无用处。

Elasticsearch 不仅仅只是全文搜索,我们还将介绍结构化搜索、数据分析、复杂的人类语言处理、地理位置和对象间关联关系等。 我们还将探讨为了充分利用 Elasticsearch 的水平伸缩性,应当如何建立数据模型,以及在生产环境中如何配置和监控你的集群。

Elasticsearch也使用Java开发并使用 Lucene 作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的 RESTful API 来隐藏 Lucene 的复杂性,从而让全文搜索变得简单。

不过,Elasticsearch 不仅仅是 Lucene 和全文搜索,我们还能这样去描述它:

壹:安装软件

一:安装elasticsearch

1、安装

1、搜索镜像
docker search Elasticsearch 2、拉取镜像
docker pull elasticsearch:7.5.2 3、查看镜像
docker images 4、启动容器
docker run -d --name elaseticsearch -p 9200:9200 -p 9300:9300 -e ES_JAVA_POTS="-Xms256m -Xmx256m" -e "discovery.type=single-node" [镜像id] 5、访问
http://localhost:9200 {
"name": "ea92e317dcb0",
"cluster_name": "docker-cluster",
"cluster_uuid": "nN5sGE2FQuidchtltDxAhQ",
"version": {
"number": "7.5.2",
"build_flavor": "default",
"build_type": "docker",
"build_hash": "8bec50e1e0ad29dad5653712cf3bb580cd1afcdf",
"build_date": "2020-01-15T12:11:52.313576Z",
"build_snapshot": false,
"lucene_version": "8.3.0",
"minimum_wire_compatibility_version": "6.8.0",
"minimum_index_compatibility_version": "6.0.0-beta1"
},
"tagline": "You Know, for Search"
}

2、问题

1、启动失败,docker内容器无故停止

原因:elasticsearch初始占用内存大,开始占用两G,而我给docker只分配了1G,所以造成内存不够从而造成启失败,如果你电脑内存够大,你可以给你的docker分配大一点的内存,内存不够的同学,你可以在创建容器时加参数-e ES_JAVA_POTS="-Xms256m -Xmx256m"

二:安装kibana

1、安装

1、拉取镜像
docker pull kibana:7.5.2
注:最好与你的elasticsearch版本一致,以免出现问题 2、创建容器
docker run -d --name kibana -p 5601:5601 [镜像id] 3、访问测试
访问地址:http://locahost:5601

在调试很久之后,终于来到我渴望来到的界面。



他里面有一个测试:http://localhost:9200/_search

2、问题

1、访问kibana出现问题:Kibana server is not ready yet,具体问题你需要看他的日志,使用kitematic可以查看容器的日志。

出现这个问题的可能性有很多,需要注意的是:

  • 1、确认你的elasticsearch是否启动,这没什么好说的
  • 2、确认你的elasticsearch版本是否与你的kibana版本是否一致,虽然我也没有测试,版本一致总归没有什么坏处。

  • 3、你最好把kibana与elasticsearch两个容器之间连接起来

  • 4、在进入容器后,你必须修改elasticsearch.hosts参数,它里面会有默认值为http://elaseicsearch:9200,注意这里不能改为http://localhost:9200,因为这样他会映射到你的容器内部。



    你需要在你的主机查看ip,输入ipconfig,这里会有很多ip,请注意,这里只有一个才能连接,如果你不能确认是哪一个,请在你的kibana容器内部curl一下http://ip:9200,出现elasticsearch信息的才是正确的。

贰:Elastic search初体验

数据的操作无非就是增删改查四种对吧,接下来演示怎么实现这四种方法:

一:添加数据

这时elasticsearch开发文档里的例子。

PUT /megacorp/employee/1
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
} PUT /megacorp/employee/2
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
} PUT /megacorp/employee/3
{
"first_name" : "Douglas",
"last_name" : "Fir",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}

以1号员工为例:这里使用Postman工具:

我们将请求切换为PUT请求,输入Url,在请求里面加上数据,点击发送,就会看到响应,

注意,路径 /megacorp/employee/1 包含了三部分的信息:

  • megacorp(索引名称)
  • employee(类型名称)
  • 1(特定雇员的ID)

    请求体 —— JSON 文档 —— 包含了这位员工的所有详细信息,他的名字叫 John Smith ,今年 25 岁,喜欢攀岩。

二:查看数据

目前我们已经在 Elasticsearch 中存储了一些数据, 接下来就能专注于实现应用的业务需求了。第一个需求是可以检索到单个雇员的数据。

这在 Elasticsearch 中很简单。简单地执行 一个 HTTP GET 请求并指定文档的地址——索引库、类型和ID。 使用这三个信息可以返回原始的 JSON 文档:

1、查询单个数据

同样的,我们只需要将索引名、类别名、id的形式以get的请求发送,就可以实现单个数据的查询。

GET /megacorp/employee/1

返回结果包含了文档的一些元数据,以及 _source 属性,内容是 John Smith 雇员的原始 JSON 文档

2、查询所有的数据

一个 GET 是相当简单的,可以直接得到指定的文档。 现在尝试点儿稍微高级的功能,比如一个简单的搜索!

第一个尝试的几乎是最简单的搜索了。我们使用下列请求来搜索所有雇员:

GET /megacorp/employee/_search



可以看到,我们仍然使用索引库 megacorp 以及类型 employee,但与指定一个文档 ID 不同,这次使用 _search 。返回结果包括了所有三个文档,放在数组 hits 中。一个搜索默认返回十条结果。

{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 3,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 1,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 1,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_score": 1,
"_source": {
"first_name": "Douglas",
"last_name": "Fir",
"age": 35,
"about": "I like to build cabinets",
"interests": [
"forestry"
]
}
}
]
}
}

3、按条件查询

①、get

尝试下搜索姓氏为 Smith 的雇员。、这个方法一般涉及到一个 查询字符串 (query-string) 搜索,因为我们可以通过一个URL参数来传递查询信息给搜索接口:

GET /megacorp/employee/_search?q=last_name:Smith



可以看到我们将查询本身赋值给参数 q= 。返回结果给出了所有的 Smith,一共两条。

{
"took": 79,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 0.47000363,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.47000363,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.47000363,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
}
]
}
}

②:post请求

官方文档介绍这是使用查询表达式搜索。

Query-string 搜索通过命令非常方便地进行临时性的即席搜索 ,但它有自身的局限性(参见 轻量 搜索 )。Elasticsearch 提供一个丰富灵活的查询语言叫做 查询表达式 , 它支持构建更加复杂和健壮的查询。

领域特定语言 (DSL), 使用 JSON 构造了一个请求。我们可以像这样重写之前的查询所有名为 Smith 的搜索 :

POST /megacorp/employee/_search
{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}



官方文档给出的是get请求,我实在是不知道参数加在哪里,加在header里,没有任何效果,于是我改成了POST请求,请求成功,值得注意的是只有在有条件的时候才能查询成功。

其中与get请求的不同是:不再使用 query-string 参数,而是一个请求体替代。这个请求使用 JSON 构造,并使用了一个 match 查询(属于查询类型之一)

{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 0.47000363,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.47000363,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.47000363,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
}
]
}
}

4、查看数据是否存在

相对于其他集中请求,这时一种比较少见的请求方式,如果需要查看数据是否存在,将请求方式改为head即可。

HEAD  /megacorp/employee/1

发送请求后,你也许会疑问,咦,他也没有返回信息啊,那我怎么知道结果呢。别急,听我慢慢道来。



根据图,我们可以看出,他的确没有返回结果,但是可以注意到,再右上角他会有一个状态码,当有这个信息时,他的状态码就是200,没有就返回404表示找不到。

三、修改数据

我们使用了GET和POST查询数据,使用PUT新增数据,根据官方给出的是修改数据还是用PUT,如果存在数据他就会更新数据,这样的模式确实与我们常见的请求使用方法略有不同。

PUT /megacorp/employee/1
{
"first_name" : "唐",
"last_name" : "菜鸡",
"age" : 21,
"about" : "I love to go rock climbing",
"interests": [ "movie", "music" ]
}

发送该请求后,返回参数

{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 3,
"_primary_term": 3
}

我们对比可以发现,主要有两处不同,看图你就会说,呀不对呀,明明有四处,那是因为之前插入第一条的时候还只有一条参数,现在有三条了,不许抬杠,不许抬杠,不许抬杠。

不同:他的版本加一,返回状态为created变为updated。



我们再查询一次就会发现他的信息已经发现改变,这就是修改。

{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_version": 2,
"_seq_no": 3,
"_primary_term": 3,
"found": true,
"_source": {
"first_name": "唐",
"last_name": "菜鸡",
"age": 21,
"about": "I love to go rock climbing",
"interests": [
"movie",
"music"
]
}
}

四:删除数据

根据前面,不用想我们也知道删除数据用的就是delete请求。

DELETE  /megacorp/employee/2

我们删除二号员工,返回如下信息,result变为deleted。

{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_version": 2,
"result": "deleted",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 4,
"_primary_term": 3
}

作者有话

当然,elasticsearch的功能不仅仅是如此,这些只是他的基本功能之一,更多请看他的开发文档。 传送门

【docker Elasticsearch】Rest风格的分布式开源搜索和分析引擎Elasticsearch初体验的更多相关文章

  1. Elasticsearch是一个分布式可扩展的实时搜索和分析引擎,elasticsearch安装配置及中文分词

    http://fuxiaopang.gitbooks.io/learnelasticsearch/content/  (中文) 在Elasticsearch中,文档术语一种类型(type),各种各样的 ...

  2. 用ElasticSearch搭建自己的搜索和分析引擎

    作者:robben,腾讯高级工程师 商业转载请联系腾讯WeTest获得授权,非商业转载请注明出处. 导语:互联网产品中的检索功能随处可见.当你的项目规模是百度大搜|商搜或者微信公众号搜索这种体量的时候 ...

  3. 用ElasticSearch搭建自己的搜索和分析引擎【转自腾讯Wetest】

    本文大概地介绍了ES的原理,以及Wetest在使用ES中的一些经验总结.因为ES本身涉及的功能和知识点非常广泛,所以这里重点挑出了实际项目中可能会用到,也可能会踩坑的一些关键点进行了阐述. 一 重要概 ...

  4. Elasticsearch分布式搜索和数据分析引擎-ElasticStack(上)v7.14.0

    Elasticsearch概述 **本人博客网站 **IT小神 www.itxiaoshen.com Elasticsearch官网地址 https://www.elastic.co/cn/elast ...

  5. 分布式搜索ElasticSearch构建集群与简单搜索实例应用

    分布式搜索ElasticSearch构建集群与简单搜索实例应用 关于ElasticSearch不介绍了,直接说应用. 分布式ElasticSearch集群构建的方法. 1.通过在程序中创建一个嵌入es ...

  6. Elastic Stack(ElasticSearch 、 Kibana 和 Logstash) 实现日志的自动采集、搜索和分析

    Elastic Stack 包括 Elasticsearch.Kibana.Beats 和 Logstash(也称为 ELK Stack).能够安全可靠地获取任何来源.任何格式的数据,然后实时地对数据 ...

  7. ElasticSearch入门系列(七)搜索

    一.在之前,我们已经学会了如何使用elasticsearch作为一个简单的NoSql风格的分布式文件存储器--我们可以将一个JSON文档扔给Elasticsearch.也可以根据ID检索他们.但Ela ...

  8. 开源搜索引擎评估:lucene sphinx elasticsearch

    开源搜索引擎评估:lucene sphinx elasticsearch 开源搜索引擎程序有3大类 lucene系,java开发,包括solr和elasticsearch sphinx,c++开发,简 ...

  9. ElasticSearch 5学习(6)——分布式集群学习分享1

    在使用中我们把文档存入ElasticSearch,但是如果能够了解ElasticSearch内部是如何存储的,将会对我们学习ElasticSearch有很清晰的认识.本文中的所使用的ElasticSe ...

随机推荐

  1. 使用document.domain+iframe跨域实例

    首先我们假设主页面地址为:http://www.js8.in/mywork/crossdomain/index.html,我们要加载的内容是位于work.2fool.cn域名下的helloworld. ...

  2. ehcache缓存框架之二级缓存

    ehcache.xml配置文件 <?xml version="1.0" encoding="UTF-8"?> <ehcache xmlns:x ...

  3. Python 字符编码判断

    题记 在获取中文字符的时候,如果出现乱码的情况,我们需要了解当前的字符串的编码形式.使用下面两种方法可以判断字符串的编码形式. 法一: isinstance(s, str) 用来判断是否为一般字符串 ...

  4. DIY电压基准测万用表

    | 分类 日志  | 手里有三个常用的手持表,UT61E四位半,优利德明星产品:福禄克F117C,换挡快,单手操作还带LoZ:UT210E小钳表能够通过修改EEPROM更改电表配置,已经刷了6000字 ...

  5. 记录一下自己写PHP程序时走过的一些坑

    写在前面: 喔噢,转眼间发现自己正式开发程序(PHP)已经有快有1个月了,一路上走了许多的坑,有时遇到坑的时候真想放弃,但是还是坚持下来了!所以写了这篇文章来帮助那些刚刚接触PHP的小白们.[: )] ...

  6. Centos 7 使用Securecrt 配置Public key 登录

    环境:Centos 7 SecureCRT 版本:8.0.4 需求:配置使用Public key 登录服务器禁用密码登录 1. 配置使用SecureCRT,生成Public key 跟私钥 2. 配置 ...

  7. 完整版EXCEL导出 (大框架SpringCloud 业务还是Springboot一套)

    这里用的是easypoi 首先引入jar包 <!-- excel --><dependency> <groupId>cn.afterturn</groupId ...

  8. python 软件目录规范

      软件目录结构规范 软件开发规范 一.为什么要设计好目录结构? 1.可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪个,测试目录在哪儿,配置文件在哪儿等等.从而非常快 ...

  9. 从头解决PKIX path building failed

    从头解决PKIX path building failed的问题 本篇涉及到PKIX path building failed的原因和解决办法(包括暂时解决和长效解决的方法),也包括HTTP和HTTP ...

  10. 从web现状谈及前端性能优化

    从web现状谈及性能优化 原文出处:<Karolina Szczur: The State of the Web> 性能优化指南The Internet is growing expone ...