Exponial

题目

http://exam.upc.edu.cn/problem.php?cid=1512&pid=4

欧拉降幂定理:当b>phi(p)时,有a^b%p = a^(b%phi(p)+phi(p))%p

这题做的难受....看到题目我就猜到肯定用到欧拉降幂,然后就毫无目的地找规律。然后发现不同地取欧拉函数会变成0,然后内心毫无波动.....可能不怎么会递归

思路:当n>=6时,欧拉降幂定理一定适用,因为f(5)>1e9,也就是一定有欧拉降幂定理的b>phi(p)这个条件,所以f(n)%p=nf(n-1)%p=n(f(n-1)%phi(p)+phi(p))%p;再递归地求f(n-1)%phi(p)

当n<=5时,f(n)%p=n^f(n-1)%p,因为不一定有f(n-1)>phi(p)成立,所以不能用欧拉降幂定理求,直接手动求出f(n)%p即可;

从1e9递归到5很慢,但当p=1时,可以直接返回f(n)%p=0而不用递归到下一层;

AC代码:

#include <cstdio>
typedef long long ll; ll phi(ll x){
ll res=x;
for(ll i=2; i*i<=x; ++i){
if(x%i==0){
res=res-res/i;
while(x%i==0)x/=i;
}
}
if(x>1)
res=res-res/x;
return res;
}
ll qpow(ll a,ll n,ll mod){
ll res=1;
while(n){
if(n&1){
res*=a;
res%=mod;
}
n>>=1;
a=(a*a)%mod;
}
return res;
}
ll solve(ll n,ll m)
{
if(m==1) return 0;
if(n==1) return 1;
else if(n==2) return 2%m;
else if(n==3) return 9%m;
else if(n==4) return qpow(4,9,m);
ll tem=phi(m);
return qpow(n,solve(n-1,tem)+tem,m);
}
int main()
{
//printf("%lld\n",phi(1000000));
ll n,m;
while(scanf("%lld%lld",&n,&m)!=EOF){
printf("%lld\n",solve(n,m));
}
return 0;
}

好久没写博客.....自己太菜要努力鸭

[数学][欧拉降幂定理]Exponial的更多相关文章

  1. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  2. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  3. 欧拉降幂,基本计算定理——cf615D

    用基本算数定理求约数和的思想来计算, 首先用pi,ci来表示第i个质数,指数为i,然后对于每个pi,pi^2...都有指数为mul{(c_1+1)(c_2+1)(c_i-1+1)(c_i+1+1).. ...

  4. 数学--数论--欧拉降幂--P5091 欧拉定理

    题目背景 出题人也想写有趣的题面,可惜并没有能力. 题目描述 给你三个正整数,a,m,ba,m,ba,m,b,你需要求:ab mod ma^b \bmod mabmodm 输入格式 一行三个整数,a, ...

  5. TOJ 3151: H1N1's Problem(欧拉降幂)

    传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=3151 时间限制(普通/Java): ...

  6. HDU4704(SummerTrainingDay04-A 欧拉降幂公式)

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  7. 2019计蒜之道初赛3 D. 阿里巴巴协助征战SARS(困难)(大数取余+欧拉降幂)

    阿里巴巴协助征战SARS(困难) 33.29% 1000ms 262144K   目前,SARS 病毒的研究在世界范围内进行,经科学家研究发现,该病毒及其变种的 DNA 的一条单链中,胞嘧啶.腺嘧啶均 ...

  8. HDU - 4704 sum 大数取余+欧拉降幂

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  9. ACM-数论-广义欧拉降幂

    https://www.cnblogs.com/31415926535x/p/11447033.html 曾今一时的懒,造就今日的泪 记得半年前去武大参加的省赛,当时的A题就是一个广义欧拉降幂的板子题 ...

随机推荐

  1. 全面掌握Nginx配置+快速搭建高可用架构 一 Centos7 安装Nginx

    Nginx官网 http://nginx.org/en/linux_packages.html#stable 配置yum 在etc的yum.repos.d目录下新增nginx.repo 将内容copy ...

  2. cmake 简易入门

    目录结构 root -| |--**.cpp |--CmakeList.txt |--current path |--(执行cmake ../) |-- (执行make的目录) 步骤: 1 编写 Cm ...

  3. POJ - 1127 Jack Straws(几何)

    题意:桌子上放着n根木棍,已知木棍两端的坐标.给定几对木棍,判断每对木棍是否相连.当两根木棍之间有公共点或可以通过相连的木棍间接的连在一起,则认为是相连的. 分析: 1.若线段i与j平行,且有部分重合 ...

  4. JAVA初学者——Hello,World!

    大家好,我是浩宇大熊猫 我本科专业学的是GIS(Geographical Information System),大学期间也学习了很多的编程语言,有C/C++/JAVA等 之前给我们授课的是韩冰老师, ...

  5. TCP协议的学习

    1.关于TCP理解的重点(TCP协议可以理解为就是一段代码) (1).TCP协议工作在传输层,对上服务socket接口,对下调用IP层 (2).TCP协议面向连接,通信前必须先3次握手建立连接关系后才 ...

  6. Dynamics CRM - 如何创建一个新的 Organization

    最近需要新建几个 CRM 的场来测试或者开发,也就是要新建 Organization,但是每次我都忘了在哪操作,写篇 blog mark 一下. 首先,新建 Organization 当然是要在 CR ...

  7. Linux系统提示无法获得锁

    这种情况出现主要是因为软件更新或者安装时出现错误. 删除掉两个临时文件即可 sudo rm /var/lib/dpkg/lock sudo rm /var/cache/apt/archive/lock ...

  8. 撤销上一次的commit

    撤销上一次的commit git reset HEAD~ 如果是撤销所有的已经add的文件: git reset HEAD .

  9. 吴裕雄--天生自然 PYTHON3开发学习:运算符

    #!/usr/bin/python3 a = 21 b = 10 c = 0 c = a + b print ("1 - c 的值为:", c) c = a - b print ( ...

  10. JQuery局部刷新与全页面刷新

    局部刷新: 这个方法就多了去了,常见的有以下几种: $.get方法,$.post方法,$.getJson方法,$.ajax方法如下 前两种使用方法基本上一样 $.get(”Default.php”, ...