摘要:本文介绍线程的安全性,原子性,java.lang.Number包下的类与CAS操作,synchronized锁,和原子性操作各方法间的对比。


线程安全性

    • 线程安全?
    • 线程安全性?
    • 原子性
      • Atomic包中的类与CAS:
        • AtomicInteger
        • AtomicLong 与 LongAdder
        • AtomicBoolean
        • AtomicIntegerFieldUpdater
        • AtomicStampReference与CAS的ABA问题
        • AtomicLongArray
      • synchronized
        • synchronized 修饰一个代码块
        • synchronized 修饰一个方法
        • synchronized 修饰一个静态方法
        • synchronized 修饰一个类
      • 原子性操作各方法间的对比

线程安全?

当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类是线程安全的。

线程安全性?

线程安全性主要体现在三个方面:原子性、可见性、有序性

  • 原子性:提供了互斥访问,同一时刻只能有一个线程来对它进行操作
  • 可见性:一个线程对主内存的修改可以及时的被其他线程观察到
  • 有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序的存在,该观察结果一般杂乱无序。

基础代码:以下代码用于描述下方的知识点,所有代码均在此代码基础上进行修改。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class CountExample {

    //请求总数
public static int clientTotal = 5000;
//同时并发执行的线程数
public static int threadTotal = 200;
//变量声明:计数
public static AtomicInteger count = new AtomicInteger(0); public static void main(String[] args) throws InterruptedException {
ExecutorService executorService = Executors.newCachedThreadPool();//创建线程池
final Semaphore semaphore = new Semaphore(threadTotal);//定义信号量,给出允许并发的数目
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);//定义计数器闭锁
for (int i = 0;i<clientTotal;i++){
executorService.execute(()->{
try {
semaphore.acquire();//判断进程是否允许被执行
add();
semaphore.release();//释放进程
} catch (InterruptedException e) {
log.error("excption",e);
}
countDownLatch.countDown();
});
}
countDownLatch.await();//保证信号量减为0
executorService.shutdown();//关闭线程池
log.info("count:{}",count.get());//变量取值
} private static void add(){
count.incrementAndGet();//变量操作
}
}12345678910111213141516171819202122232425262728293031323334

原子性

说到原子性,一共有两个方面需要学习一下,一个是JDK中已经提供好的Atomic包,他们均使用了CAS完成线程的原子性操作,另一个是使用锁的机制来处理线程之间的原子性。锁包括:synchronized、Lock

Atomic包中的类与CAS:


我们从最简单的AtomicInteger类来了解什么是CAS

AtomicInteger

上边的示例代码就是通过AtomicInteger类保证了线程的原子性。
那么它是如何保证原子性的呢?我们接下来分析一下它的源码。示例中,对count变量的+1操作,采用的是incrementAndGet方法,此方法的源码中调用了一个名为unsafe.getAndAddInt的方法

1
2
3
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}123

而getAndAddInt方法的具体实现为:

1
2
3
4
5
6
7
public final int getAndAddInt(Object var1, long var2, int var4) {
int var5;
do {
var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5;
}1234567

在此方法中,方法参数为要操作的对象Object var1、期望底层当前的数值为var2、要修改的数值var4。定义的var5为真正从底层取出来的值。采用do..while循环的方式去获取底层数值并与期望值进行比较,比较成功才将值进行修改。而这个比较再进行修改的方法就是compareAndSwapInt就是我们所说的CAS,它是一系列的接口,比如下面罗列的几个接口。使用native修饰,是底层的方法。CAS取的是compareAndSwap三个单词的首字母.

另外,示例代码中的count可以理解为JMM中的工作内存,而这里的底层数值即为主内存,如果看过我上一篇文章的盆友就能把这一块的知识点串联起来了。

1
2
3
public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5);
public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);
public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);123
AtomicLong 与 LongAdder

LongAdder是java8为我们提供的新的类,跟AtomicLong有相同的效果。首先看一下代码实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
AtomicLong:
//变量声明
public static AtomicLong count = new AtomicLong(0);
//变量操作
count.incrementAndGet();
//变量取值
count.get();1234567
LongAdder:
//变量声明
public static LongAdder count = new LongAdder();
//变量操作
count.increment();
//变量取值
count1234567

那么问题来了,为什么有了AtomicLong还要新增一个LongAdder呢?
原因是:CAS底层实现是在一个死循环中不断地尝试修改目标值,直到修改成功。如果竞争不激烈的时候,修改成功率很高,否则失败率很高。在失败的时候,这些重复的原子性操作会耗费性能。

知识点: 对于普通类型的long、double变量,JVM允许将64位的读操作或写操作拆成两个32位的操作。

LongAdder类的实现核心是将热点数据分离,比如说它可以将AtomicLong内部的内部核心数据value分离成一个数组,每个线程访问时,通过hash等算法映射到其中一个数字进行计数,而最终的计数结果则为这个数组的求和累加,其中热点数据value会被分离成多个单元的cell,每个cell独自维护内部的值。当前对象的实际值由所有的cell累计合成,这样热点就进行了有效地分离,并提高了并行度。这相当于将AtomicLong的单点的更新压力分担到各个节点上。在低并发的时候通过对base的直接更新,可以保障和AtomicLong的性能基本一致。而在高并发的时候通过分散提高了性能。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
源码:
public void increment() {
add(1L);
}
public void add(long x) {
Cell[] as; long b, v; int m; Cell a;
if ((as = cells) != null || !casBase(b = base, b + x)) {
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[getProbe() & m]) == null ||
!(uncontended = a.cas(v = a.value, v + x)))
longAccumulate(x, null, uncontended);
}
}1234567891011121314

缺点:如果在统计的时候,如果有并发更新,可能会有统计数据有误差。实际使用中在处理高并发计数的时候优先使用LongAdder,而不是AtomicLong在线程竞争很低的时候,使用AtomicLong会简单效率更高一些。比如序列号生成(准确性)

AtomicBoolean

这个类中值得一提的是它包含了一个名为compareAndSet的方法,这个方法可以做到的是控制一个boolean变量在一件事情执行之前为false,事情执行之后变为true。或者也可以理解为可以控制某一件事只让一个线程执行,并仅能执行一次。
他的源码如下:

1
2
3
4
5
public final boolean compareAndSet(boolean expect, boolean update) {
int e = expect ? 1 : 0;
int u = update ? 1 : 0;
return unsafe.compareAndSwapInt(this, valueOffset, e, u);
}12345

举例说明:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    //是否发生过
private static AtomicBoolean isHappened = new AtomicBoolean(false);
// 请求总数
public static int clientTotal = 5000;
// 同时并发执行的线程数
public static int threadTotal = 200; public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
final Semaphore semaphore = new Semaphore(threadTotal);
final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);
for (int i = 0; i < clientTotal ; i++) {
executorService.execute(() -> {
try {
semaphore.acquire();
test();
semaphore.release();
} catch (Exception e) {
log.error("exception", e);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
log.info("isHappened:{}", isHappened.get());
} private static void t 大专栏  Java并发编程入门与高并发面试(三):线程安全性-原子性-CAS(CAS的ABA问题)est() {
if (isHappened.compareAndSet(false, true)) {//控制某有一段代码只执行一次
log.info("execute");
}
} 结果:(log只打印一次)
[pool-1-thread-2] INFO com.superboys.concurrency.example.Atomic.AtomicExample6 - execute
[main] INFO com.superboys.concurrency.example.Atomic.AtomicExample6 - isHappened:true12345678910111213141516171819202122232425262728293031323334353637
AtomicIntegerFieldUpdater

这个类的核心作用是要更新一个指定的类的某一个字段的值。并且这个字段一定要用volatile修饰同时还不能是static的。
举例说明:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
@Slf4j
public class AtomicExample5 { //原子性更新某一个类的一个实例
private static AtomicIntegerFieldUpdater<AtomicExample5> updater
= AtomicIntegerFieldUpdater.newUpdater(AtomicExample5.class,"count"); @Getter
public volatile int count = 100;//必须要volatile标记,且不能是static public static void main(String[] args) {
AtomicExample5 example5 = new AtomicExample5(); if(updater.compareAndSet(example5,100,120)){
log.info("update success 1,{}",example5.getCount());
} if(updater.compareAndSet(example5,100,120)){
log.info("update success 2,{}",example5.getCount());
}else{
log.info("update failed,{}",example5.getCount());
}
}
} 此方法输出的结果为:
[main] INFO com.superboys.concurrency.example.Atomic.AtomicExample5 - update success 1,120
[main] INFO com.superboys.concurrency.example.Atomic.AtomicExample5 - update failed,120 由此可见,count的值只修改了一次。123456789101112131415161718192021222324252627282930
AtomicStampReference与CAS的ABA问题

什么是ABA问题?
CAS操作的时候,其他线程将变量的值A改成了B,但是随后又改成了A,本线程在CAS方法中使用期望值A与当前变量进行比较的时候,发现变量的值未发生改变,于是CAS就将变量的值进行了交换操作。但是实际上变量的值已经被其他的变量改变过,这与设计思想是不符合的。所以就有了AtomicStampReference。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
源码:
private static class Pair<T> {
final T reference;
final int stamp;
private Pair(T reference, int stamp) {
this.reference = reference;
this.stamp = stamp;
}
static <T> Pair<T> of(T reference, int stamp) {
return new Pair<T>(reference, stamp);
}
} private volatile Pair<V> pair; private boolean casPair(Pair<V> cmp, Pair<V> val) {
return UNSAFE.compareAndSwapObject(this, pairOffset, cmp, val);
} public boolean compareAndSet(V expectedReference,
V newReference,
int expectedStamp,
int newStamp) {
Pair<V> current = pair;
return
expectedReference == current.reference &&
expectedStamp == current.stamp &&
((newReference == current.reference && //排除新的引用和新的版本号与底层的值相同的情况
newStamp == current.stamp) ||
casPair(current, Pair.of(newReference, newStamp)));
}12345678910111213141516171819202122232425262728293031

AtomicStampReference的处理思想是,每次变量更新的时候,将变量的版本号+1,之前的ABA问题中,变量经过两次操作以后,变量的版本号就会由1变成3,也就是说只要线程对变量进行过操作,变量的版本号就会发生更改。从而解决了ABA问题。

解释一下上边的源码:
类中维护了一个volatile修饰的Pair类型变量current,Pair是一个私有的静态类,current可以理解为底层数值。
compareAndSet方法的参数部分分别为期望的引用、新的引用、期望的版本号、新的版本号。
return的逻辑为判断了期望的引用和版本号是否与底层的引用和版本号相符,并且排除了新的引用和新的版本号与底层的值相同的情况(即不需要修改)的情况(return代码部分3、4行)。条件成立,执行casPair方法,调用CAS操作。

AtomicLongArray

这个类实际上维护了一个Array数组,我们在对数值进行更新的时候,会多一个索引值让我们更新。

原子性,提供了互斥访问,同一时刻只能有一个线程来对它进行操作。那么在java里,保证同一时刻只有一个线程对它进行操作的,除了Atomic包之外,还有锁的机制。JDK提供锁主要分为两种:synchronized和Lock。接下来我们了解一下synchronized。

synchronized

依赖于JVM去实现锁,因此在这个关键字作用对象的作用范围内,都是同一时刻只能有一个线程对其进行操作的。
synchronized是java中的一个关键字,是一种同步锁。它可以修饰的对象主要有四种:

  • 修饰代码块:大括号括起来的代码,作用于调用的对象
  • 修饰方法:整个方法,作用于调用的对象
  • ———————————————————————–
  • 修饰静态方法:整个静态方法,作用于所有对象
  • 修饰类:括号括起来的部分,作用于所有对象
synchronized 修饰一个代码块

被修饰的代码称为同步语句块,作用的范围是大括号括起来的部分。作用的对象是调用这段代码的对象
验证:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class SynchronizedExample {
public void test(int j){
synchronized (this){
for (int i = 0; i < 10; i++) {
log.info("test - {} - {}",j,i);
}
}
}
//使用线程池方法进行测试:
public static void main(String[] args) {
SynchronizedExample example1 = new SynchronizedExample();
SynchronizedExample example2 = new SynchronizedExample();
ExecutorService executorService = Executors.newCachedThreadPool();
executorService.execute(()-> example1.test(1));
executorService.execute(()-> example2.test(2));
}
}1234567891011121314151617

结果:不同对象之间的操作互不影响

synchronized 修饰一个方法

被修饰的方法称为同步方法,作用的范围是大括号括起来的部分,作用的对象是调用这段代码的对象
验证:

1
2
3
4
5
6
7
8
9
public class SynchronizedExample 
public synchronized void test(int j){
for (int i = 0; i < 10; i++) {
log.info("test - {} - {}",j,i);
}
}
//验证方法与上面相同
...
}123456789

结果:不同对象之间的操作互不影响

TIPS:
如果当前类是一个父类,子类调用父类的被synchronized修饰的方法,不会携带synchronized属性,因为synchronized不属于方法声明的一部分

synchronized 修饰一个静态方法

作用的范围是synchronized 大括号括起来的部分,作用的对象是这个类的所有对象
验证:

1
2
3
4
5
6
7
8
9
public class SynchronizedExample{
public static synchronized void test(int j){
for (int i = 0; i < 10; i++) {
log.info("test - {} - {}",j,i);
}
}
//验证方法与上面相同
...
}123456789

结果:同一时间只有一个线程可以执行

synchronized 修饰一个类

验证:

1
2
3
4
5
6
7
8
9
10
11
public class SynchronizedExample{
public static void test(int j){
synchronized (SynchronizedExample.class){
for (int i = 0; i < 10; i++) {
log.info("test - {}-{}",j,i);
}
}
}
//验证方法与上面相同
...
}1234567891011

结果:同一时间只有一个线程可以执行

原子性操作各方法间的对比

  • synchronized:不可中断锁,适合竞争不激烈,可读性好
  • Lock:可中断锁,多样化同步,竞争激烈时能维持常态
  • Atomic:竞争激烈时能维持常态,比Lock性能好,每次只能同步一个值

经作者授权转载,原文地址:https://blog.csdn.net/jesonjoke/article/details/79837508

Java并发编程入门与高并发面试(三):线程安全性-原子性-CAS(CAS的ABA问题)的更多相关文章

  1. Java并发编程原理与实战二十:线程安全性问题简单总结

    一.出现线程安全性问题的条件 •在多线程的环境下 •必须有共享资源 •对共享资源进行非原子性操作   二.解决线程安全性问题的途径 •synchronized (偏向锁,轻量级锁,重量级锁) •vol ...

  2. [Java 并发] Java并发编程实践 思维导图 - 第二章 线程安全性

    依据<Java并发编程实践>一书整理的思维导图.

  3. Java并发编程原理与实战八:产生线程安全性问题原因(javap字节码分析)

    前面我们说到多线程带来的风险,其中一个很重要的就是安全性,因为其重要性因此,放到本章来进行讲解,那么线程安全性问题产生的原因,我们这节将从底层字节码来进行分析. 一.问题引出 先看一段代码 packa ...

  4. Java 并发编程(四):如何保证对象的线程安全性

    01.前言 先让我吐一句肺腑之言吧,不说出来会憋出内伤的.<Java 并发编程实战>这本书太特么枯燥了,尽管它被奉为并发编程当中的经典之作,但我还是忍不住.因为第四章"对象的组合 ...

  5. Java并发编程实践读书笔记(1)线程安全性和对象的共享

    2.线程的安全性 2.1什么是线程安全 在多个线程访问的时候,程序还能"正确",那就是线程安全的. 无状态(可以理解为没有字段的类)的对象一定是线程安全的. 2.2 原子性 典型的 ...

  6. Java基础篇——线程、并发编程知识点全面介绍(面试、学习的必备索引)

    原创不易,如需转载,请注明出处https://www.cnblogs.com/baixianlong/p/10739579.html,希望大家多多支持!!! 一.线程基础 1.线程与进程 线程是指进程 ...

  7. Java并发编程入门,看这一篇就够了

    Java并发编程一直是Java程序员必须懂但又是很难懂的技术内容.这里不仅仅是指使用简单的多线程编程,或者使用juc的某个类.当然这些都是并发编程的基本知识,除了使用这些工具以外,Java并发编程中涉 ...

  8. Java与Netty实现高性能高并发

    摘要: 1. 背景 1.1. 惊人的性能数据 最近一个圈内朋友通过私信告诉我,通过使用Netty4 + Thrift压缩二进制编解码技术,他们实现了10W TPS(1K的复杂POJO对象)的跨节点远程 ...

  9. Java生鲜电商平台-高并发的设计与架构

    Java生鲜电商平台-高并发的设计与架构 说明:源码下载Java开源生鲜电商平台以及高并发的设计与架构文档 对于高并发的场景来说,比如电商类,o2o,门户,等等互联网类的项目,缓存技术是Java项目中 ...

随机推荐

  1. css,js,jquery的载入方式和属性控制

    本文章主要总结了css,js,jQuery在编写程序时的载入方式,与属性控制方式html和css共同组成了一个最基础的网页,js为标签样式提供动态效果 一,css的载入方式与属性控制 1.1,css引 ...

  2. C语言实现整数转字符串

    #include <stdio.h> void intToString(int N,char arr[]){ //仅支持有符号4字节的int类型,范围-2147483648 - 21474 ...

  3. HDU重现赛之2019CCPC-江西省赛

    本人蒟蒻,5个小时过了5道,看到好几个大佬AK,%%%%%%% http://acm.hdu.edu.cn/contests/contest_show.php?cid=868 先放大佬的题解(不是我写 ...

  4. 吴裕雄--天生自然 pythonTensorFlow自然语言处理:Attention模型--训练

    import tensorflow as tf # 1.参数设置. # 假设输入数据已经转换成了单词编号的格式. SRC_TRAIN_DATA = "F:\\TensorFlowGoogle ...

  5. oracle 查询表空间

    测试用户连接C:\Users\ZP>sqlplus /nologconn hbcxuser/hbcxpass --查看所有表空间 select * from user_tablespaces-- ...

  6. android viewgrop(实现了事件监听/手动滑动)

    package com.example.myviewgroup; import android.content.Context;import android.os.Handler;import and ...

  7. flask学习笔记1.21

    先新建一个文件夹  templates from flask import Flask #创建Flask应用程序实例 #需要传入__name__,作用是为了确定资源所在的路径 app = Flask( ...

  8. DNA methylation|Transcription factors|PTM|Chromosome conformation|表观遗传学测序技术

    生物医疗大数据-DNA element functions and identification Genetic vs epigenetic GENETICS  遗传学 DNA Code: 64 tr ...

  9. [单调队列]XKC's basketball team

    XKC's basketball team 题意:给定一个序列,从每一个数后面比它大至少 \(m\) 的数中求出与它之间最大的距离.如果没有则为 \(-1\). 题解:从后向前维护一个递增的队列,从后 ...

  10. GSON解译Json为DTO

    除了用okhttp网络库外,还用到google的gson库. 1. uti类的对象一般都用懒汉模式.这次gson也是用懒汉模式. public class GsonTools { private st ...