LG_2051_[AHOI2009]中国象棋
题目描述
这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!
输入输出格式
输入格式
一行包含两个整数N,M,之间由一个空格隔开。
输出格式
总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。
样例
INPUT
1 3
OUTPUT
7
HINT
样例说明
除了3个格子里都塞满了炮以外,其它方案都是可行的,所以一共有222-1=7种方案。
数据范围
100%的数据中N和M均不超过100
50%的数据中N和M至少有一个数不超过8
30%的数据中N和M均不超过6
SOLUTION
dp
本题我一开始想往状压上靠,对于每个状态,我们记一个类似于三进制的数来维护状态,但是由于数据范围十分的迷,100说大也不大,有的题\(10^7\)的都有(当然不是状压题),说大也大,100位的数怎么存怎么转移都是不好处理的问题。于是放弃思考直奔题解。
题解提示了一个重要的问题:和Brick game那题一样,本题对两行之间的状态转移并没有特殊要求,换句话说其实我们并不关心走到最后到底是哪些列没有炮,哪些列只有一个,哪些列只有两个,我们只关心到底有多少列没有炮,有多少列只有一个炮,有多少列有两个炮。而由于题目给出的限制,同一行最多只能新增两个炮,所以可以实现\(O(1)\)的转移。
所以我们可以考虑设dp数组为\(dp[i][j][k]\)表示第\(i\)行,前\(i\)行有\(j\)列含有一个炮,有\(k\)列含有2个炮。
所以转移可以是这样:
- 本行放两个,全部放在原来为空不同两列;
- 本行放两个,一个放在原有一个的某列,一个放在为空的某列;
- 本行放两个,全部放在原有一个的不同两列;
- 本行放一个,放在空列;
- 本行放一个,放在原有一个的某列;
- 本行不放炮。
(我代码里也是按此顺序转移的,权当作是注释看吧)
由此题又可以发现,其实对于很多dp题,它们的优化往往会从优化状态转移入手,对于有多个状态转移方式的dp,应该考虑清楚这些具体状态是否必要,可否简化为一种抽象的状态,这种思路在洛谷2018年11月月赛T3咕咕咕的正解中也有体现,是一种比较好的思路。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
typedef long long LL;
const int N=110;
const int P=9999973;
int n,m;
LL dp[N][N][N];
inline LL C2(LL num) {LL ans=(num)*(num-1)/2;return ans;}
int main(){
int i,j;
scanf("%d%d",&n,&m);
memset(dp,0,sizeof(dp));
dp[0][0][0]=1;
for (i=0;i<n;++i){
for (j=0;j<=m;++j){
for (int k=0;(j+k)<=m;++k){
if (m-j-k>1) dp[i+1][j+2][k]=(dp[i+1][j+2][k]+dp[i][j][k]*C2(m-j-k))%P;
if ((m-j-k>0)&&(j>0)) dp[i+1][j][k+1]=(dp[i+1][j][k+1]+dp[i][j][k]*(m-j-k)*(j)%P)%P;
if (j>1) dp[i+1][j-2][k+2]=(dp[i+1][j-2][k+2]+dp[i][j][k]*C2(j)%P)%P;
if (m-j-k>0) dp[i+1][j+1][k]=(dp[i+1][j+1][k]+dp[i][j][k]*(m-j-k)%P)%P;
if (j>0) dp[i+1][j-1][k+1]=(dp[i+1][j-1][k+1]+dp[i][j][k]*(j)%P)%P;
dp[i+1][j][k]=(dp[i+1][j][k]+dp[i][j][k])%P;
}
}
}
LL ans=0;
for (i=0;i<=m;++i)
for (j=0;(i+j)<=m;++j)
ans=(ans+dp[n][i][j])%P;
printf("%lld\n",ans);
return 0;
}
LG_2051_[AHOI2009]中国象棋的更多相关文章
- 洛谷 P2051 [AHOI2009]中国象棋 解题报告
P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...
- luogu 2051 [AHOI2009]中国象棋
luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...
- [洛谷P2051] [AHOI2009]中国象棋
洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...
- 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP
P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...
- Luogu P2051 [AHOI2009]中国象棋(dp)
P2051 [AHOI2009]中国象棋 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个 \(N\) 行 \(M\) 列的棋盘上,让你放若干个炮(可以是 \(0\) 个),使得没有一个炮 ...
- [Luogu P2051] [AHOI2009]中国象棋 (状压DP->网格DP)
题面 传送门:https://www.luogu.org/problemnew/show/P2051 Solution 看到这题,我们不妨先看一下数据范围 30pt:n,m<=6 显然搜索,直接 ...
- P2051 [AHOI2009]中国象棋
题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...
- [AHOI2009]中国象棋
题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...
- [P2051 [AHOI2009]中国象棋] DP
https://www.luogu.org/problemnew/show/P2051 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一 ...
随机推荐
- Glob 模式
Glob 是什么 glob 是一种文件匹配模式,全称 global,它起源于 Unix 的 bash shell 中,比如在 linux 中常用的 mv *.txt tmp/ 中,*.txt 就使用到 ...
- 吴裕雄--天生自然深度学习TensorBoard可视化:改造后的mnist_train
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 ...
- 【图论算法】Dijstra&BFS
选择V-S中的点加入S时用了贪心思想,即求d[]中legth最小且未被标记(未加入加入S)的点. 一点都没优化的实现: import java.lang.reflect.Array; /** * Cr ...
- Linux中的各种文件类型
Linux中有一句话:一切皆是文件 1.普通文件( - regular file ) (1).文本文件 文件中的内容是由文本构成的,文本指的是ASCII码字符.文件里的内容本质上都是数字( ...
- Java常用的公共方法
--获取规字符串中的指定名称的某个字段值 1.public String getValueByName(String params,String name) --用于通过表单选中的复选框获取它的值(j ...
- hdu2896&&3065
题:http://acm.hdu.edu.cn/showproblem.php?pid=2896 分析:ac自动机模板 注意细节,1.128个ascii码都要: 2.只要关键码含有只输出一个编号就行 ...
- 容斥原理的(二进制思想和质因子分解+模板)hdu4135+ecf81.D
题:http://acm.hdu.edu.cn/showproblem.php?pid=4135 题意:求[A,B]与N互质的数的个数 #include<iostream> #includ ...
- springboot学习笔记:9.springboot+mybatis+通用mapper+多数据源
本文承接上一篇文章:springboot学习笔记:8. springboot+druid+mysql+mybatis+通用mapper+pagehelper+mybatis-generator+fre ...
- 获取cell上按钮事件
原由:点击cell上的按钮,无法获取button对应的cell位置 //获取按钮上层控件,也就是cell本身 AccountCell *cell= (AccountCell *)[按钮名称 super ...
- Pooled genome sequence strategies |representative genome assembly approaches|Domestication|GERP|selective sweep|Hybridization|Introgression|iHS|SNP genotyping arrays|haplotype
Design based on biology 通过比较基因组学的方法,将脊椎动物基因组的数据,解决生物学各方面问题.新的调控注释(在脊椎动物的进化过程中的出现的)可以丰富物种树(比如不同功能蛋白质进 ...