题意:n个人围成一圈,另外一个人最开始站在第一个人前面,每次从集合s里面随机选一个数x,这个人顺时针经过x个人后停下来,当前位置的前一个人出队,然后继续进行,求最后剩下的那个人的可能编号。

思路:由于只求最后一个人的编号,可以将一次操作后的人进行重编号,来进行状态转移,转化为子问题用dp来解决。dp方程比较容易写出,注意下细节就好了。

 #pragma comment(linker, "/STACK:102400000,102400000")

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <map>
#include <queue>
#include <deque>
#include <cmath>
#include <vector>
#include <ctime>
#include <cctype>
#include <set>
#include <bitset>
#include <functional>
#include <numeric>
#include <stdexcept>
#include <utility> using namespace std; #define mem0(a) memset(a, 0, sizeof(a))
#define mem_1(a) memset(a, -1, sizeof(a))
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
#define define_m int m = (l + r) >> 1
#define rep_up0(a, b) for (int a = 0; a < (b); a++)
#define rep_up1(a, b) for (int a = 1; a <= (b); a++)
#define rep_down0(a, b) for (int a = b - 1; a >= 0; a--)
#define rep_down1(a, b) for (int a = b; a > 0; a--)
#define all(a) (a).begin(), (a).end()
#define lowbit(x) ((x) & (-(x)))
#define constructInt4(name, a, b, c, d) name(int a = 0, int b = 0, int c = 0, int d = 0): a(a), b(b), c(c), d(d) {}
#define constructInt3(name, a, b, c) name(int a = 0, int b = 0, int c = 0): a(a), b(b), c(c) {}
#define constructInt2(name, a, b) name(int a = 0, int b = 0): a(a), b(b) {}
#define pchr(a) putchar(a)
#define pstr(a) printf("%s", a)
#define sstr(a) scanf("%s", a)
#define sint(a) scanf("%d", &a)
#define sint2(a, b) scanf("%d%d", &a, &b)
#define sint3(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define pint(a) printf("%d\n", a)
#define test_print1(a) cout << "var1 = " << a << endl
#define test_print2(a, b) cout << "var1 = " << a << ", var2 = " << b << endl
#define test_print3(a, b, c) cout << "var1 = " << a << ", var2 = " << b << ", var3 = " << c << endl typedef long long LL;
typedef pair<int, int> pii;
typedef vector<int> vi; const int dx[] = {, , -, , , , -, -};
const int dy[] = {-, , , , , -, , - };
const int maxn = 2e2 + ;
const int md = ;
const int inf = 1e9 + ;
const LL inf_L = 1e18 + ;
const double pi = acos(-1.0);
const double eps = 1e-; template<class T>T gcd(T a, T b){return b==?a:gcd(b,a%b);}
template<class T>bool max_update(T &a,const T &b){if(b>a){a = b; return true;}return false;}
template<class T>bool min_update(T &a,const T &b){if(b<a){a = b; return true;}return false;}
template<class T>T condition(bool f, T a, T b){return f?a:b;}
template<class T>void copy_arr(T a[], T b[], int n){rep_up0(i,n)a[i]=b[i];}
int make_id(int x, int y, int n) { return x * n + y; } int p[maxn], f[maxn][maxn], ans[maxn];
int main() {
//freopen("in.txt", "r", stdin);
int T, n, m;
cin >> T;
while (T--) {
cin >> n >> m;
rep_up0(i, m) {
sint(p[i]);
}
mem0(f);
f[n][] = true;
for (int i = n - ; i; i --) {
for (int j = ; j < n - i + ; j ++) {
rep_up0(k, m) {
if ((p[k] + n - i) % (n - i + ) == j) continue;
int sta, tmp = p[k] % (n - i + );
if (j >= tmp) sta = j - tmp;
else sta = n - i + - tmp + j;
f[i][j] = f[i][j] || f[i + ][sta];
}
}
}
int cnt = ;
rep_up0(i, n) {
if (f[][i]) ans[cnt ++] = i + ;
}
cout << cnt << endl;
rep_up0(i, cnt) {
printf("%d%c", ans[i], i == cnt - ? '\n' : ' ');
}
}
return ;
}

[hdu5218]DP-约瑟夫环变形的更多相关文章

  1. 【约瑟夫环变形】UVa 1394 - And Then There Was One

    首先看到这题脑子里立刻跳出链表..后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T. 看如家的分析没怎么看懂,后来发现这篇自己理解起来更 ...

  2. HDU 5643 King's Game | 约瑟夫环变形

    经典约瑟夫环 }; ; i<=n; i++) { f[i] = (f[i-] + k) % i; } 变形:k是变化的 #include <iostream> #include &l ...

  3. Poj 3517 And Then There Was One(约瑟夫环变形)

    简单说一下约瑟夫环:约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个 ...

  4. poj 1012 &amp; hdu 1443 Joseph(约瑟夫环变形)

    题目链接: POJ  1012: id=1012">http://poj.org/problem?id=1012 HDU 1443: pid=1443">http:// ...

  5. F - System Overload(约瑟夫环变形)

    Description Recently you must have experienced that when too many people use the BBS simultaneously, ...

  6. G - And Then There Was One (约瑟夫环变形)

    Description Let’s play a stone removing game. Initially, n stones are arranged on a circle and numbe ...

  7. 14.约瑟夫环问题[JosephusProblem]

    [题目] n个数字(0,1,…,n-1)形成一个圆圈,从数字0开始,每次从这个圆圈中删除第m个数字(第一个为当前数字本身,第二个为当前数字的下一个数字).当一个数字删除后,从被删除数字的下一个继续删除 ...

  8. And Then There Was One(约瑟夫问题变形)

    题目链接:http://poj.org/problem?id=3517 And Then There Was One Time Limit: 5000MS   Memory Limit: 65536K ...

  9. HDU 5643 King's Game 【约瑟夫环】

    题意: 变形的约瑟夫环,最初为每个人编号1到n,第i次删去报号为i的人,然后从它的下一个人开始重新从1开始报号,问最终剩下第几号人? 分析: 首先看一下裸的约瑟夫环问题: 共n个人,从1开始报数,报到 ...

  10. C#实现约瑟夫环问题

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace orde ...

随机推荐

  1. 基于Python的Webservice开发(四)-泛微OA的SOAP接口

    一.功能需求 泛微e-cology可以在流程中调用Webservice接口实现与其他系统的联动等复杂功能.但是目前泛微文档中仅提供了调用的方法,但是没有关于接口的相关开发信息. 本次案例是用Pytho ...

  2. 靠!安装了macOS Catalina(10.15.4)后,文件系统都乱套了

    最近闲来无事,决定将我的两台apple电脑升级成最新的苹果系统(macOS Catalina),当然,由于以前升级过多次mac系统,所以毫不犹豫从app store下载了最新的macOS Cetali ...

  3. mysql参数max_binlog_cache_size设置不当引发的血案

    日常运维中的坑真是防不胜防,不一小心就遇到别人给你挖的坑.最近又遇到经验不足的DBA不知道从哪拷贝的配置文件(据说是当时参加某培训机构视频培训是资料里的模板,真的是误人子弟呀),其中把max_binl ...

  4. 【FishFX】花式撩骚,打造TypeScript易用框架。

    · 栗子入手 假设有以下foo数组,数组中每个对象都拥有id,name两个属性,现在需要查找id > 0的对象数量. const foo: Array<{ id: number, name ...

  5. docker commit理解构建镜像(7)

    镜像是多层存储,每一层是在前一层的基础上进行的修改: 而容器同样也是多层存储是在以镜像为基础层,在基础层上加一层作为容器运行时的存储层. 当我们使用Docker Hub的镜像无法满足我们的需求时,我们 ...

  6. jstat命令查看JVM 的GC状态

    转载于   https://www.cnblogs.com/alter888/p/10407952.html jstat命令可以查看堆内存各部分的使用量,以及加载类的数量.命令的格式如下: jstat ...

  7. 标准库shelve

    shelve模块是一个简单的k,v将内存数据通过文件持久化的模块,可以持久化任何pickle可支持的python数据格式. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

  8. XSS攻击简单介绍

    之前由我负责维护的一个项目被检测出存在可能被XSS攻击的漏洞. 吓得我赶紧恶补了下XSS. XSS,全称为Cross Site Script,跨站脚本攻击,是WEB程序中一种常见的漏洞.其主要的攻击手 ...

  9. 数据开源工具:Hadoop为企业带来什么?

    熟悉大数据的人一定不会对大名鼎鼎的Hadoop工具陌生,Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.Hadoop的框架最核 ...

  10. Mbatis逆向工程常遇错误

    org.apache.ibatis.exceptions.PersistenceException: ### Error building SqlSession.### The error may e ...