机器学习4- 多元线性回归+Python实现
1 多元线性回归
更一般的情况,数据集 \(D\) 的样本由 \(d\) 个属性描述,此时我们试图学得
\]
称为多元线性回归(multivariate linear regression)或多变量线性回归。
类似的,使用最小二乘法估计 \(\boldsymbol{w}\) 和 \(b\)。
由 \(f(\boldsymbol{x}_i) = \boldsymbol{w}^T\boldsymbol{x}_i+b\) 知:
f(\boldsymbol{x}_2) = w_1x_{21} + w_2x_{22} + ... + w_dx_{2d} + b \\
... ... \\
f(\boldsymbol{x}_m) = w_1x_{m1} + w_2x_{m2} + ... + w_dx_{md} + b \\
\]
我们记
\]
x_{11} & x_{12} & \cdots & x_{1d} & 1 \\
x_{21} & x_{22} & \cdots & x_{2d} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{md} & 1
\end{pmatrix}
=\begin{pmatrix}
\boldsymbol{x}_1^T & 1 \\
\boldsymbol{x}_2^T & 1 \\
\vdots & \vdots \\
\boldsymbol{x}_m^T & 1
\end{pmatrix}
\]
\]
可得:
\]
类似于前篇博客的式子 (2.3) 有:
\tag{1.2}
\]
令 \(E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y}-\boldsymbol{X}\hat{\boldsymbol{w}})^T(\boldsymbol{y}-\boldsymbol{X}\hat{\boldsymbol{w}})\),对 \(\hat{\boldsymbol{w}}\) 求导得:
\tag{1.3}
\]
令上式为零,得到 \(\hat{\boldsymbol{w}}\) 最优解的闭式解。
当 \(\boldsymbol{X}^T\boldsymbol{X}\) 为满秩矩阵(full-rank matrix)或正定矩阵(positive define matrix)时,令式 (1.2) 为零可得:
\]
令 \(\hat{\boldsymbol{x}_i} = (\boldsymbol{x}_i, 1)\) 得到最终学得的多元线性回归模型为:
\]
当 \(\boldsymbol{X}^T\boldsymbol{X}\) 不是满秩矩阵时,可解出多个 \(\hat{\boldsymbol{w}}\) 使得均方误差最小。选择哪个解输出取决于学习算法的归纳偏好。常用做法是引入正则化(regularization)项。
2 多元线性回归的Python实现
现有如下数据,我们希望通过分析披萨的直径、辅料数量与价格的线性关系,来预测披萨的价格:
2.1 手动实现
2.1.1 导入必要模块
import numpy as np
import pandas as pd
2.1.2 加载数据
pizza = pd.read_csv("pizza_multi.csv", index_col='Id')
pizza
2.1.3 计算系数
由公式
\]
可计算出 \(\hat{\boldsymbol{w}}^*\) 的值。
我们将后 5 行数据作为测试集,其他为测试集:
X = pizza.iloc[:-5, :2].values
y = pizza.iloc[:-5, 2].values.reshape((-1, 1))
print(X)
print(y)
[[ 6 2]
[ 8 1]
[10 0]
[14 2]
[18 0]]
[[ 7. ]
[ 9. ]
[13. ]
[17.5]
[18. ]]
ones = np.ones(X.shape[0]).reshape(-1,1)
X = np.hstack((X,ones))
X
array([[ 6., 2., 1.],
[ 8., 1., 1.],
[10., 0., 1.],
[14., 2., 1.],
[18., 0., 1.]])
w_ = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y)
w_
array([[1.01041667],
[0.39583333],
[1.1875 ]])
即:
\]
\]
b = w_[-1]
w = w_[:-1]
print(w)
print(b)
[[1.01041667]
[0.39583333]]
[1.1875]
2.1.4 预测
X_test = pizza.iloc[-5:, :2].values
y_test = pizza.iloc[-5:, 2].values.reshape((-1, 1))
print(X_test)
print(y_test)
[[ 8 2]
[ 9 0]
[11 2]
[16 2]
[12 0]]
[[11. ]
[ 8.5]
[15. ]
[18. ]
[11. ]]
y_pred = np.dot(X_test, w) + b
# y_pred = np.dot(np.hstack((X_test, ones)), w_)
print("目标值:\n", y_test)
print("预测值:\n", y_pred)
目标值:
[[11. ]
[ 8.5]
[15. ]
[18. ]
[11. ]]
预测值:
[[10.0625 ]
[10.28125 ]
[13.09375 ]
[18.14583333]
[13.3125 ]]
2.2 使用 sklearn
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
# 读取数据
pizza = pd.read_csv("pizza_multi.csv", index_col='Id')
X = pizza.iloc[:-5, :2].values
y = pizza.iloc[:-5, 2].values.reshape((-1, 1))
X_test = pizza.iloc[-5:, :2].values
y_test = pizza.iloc[-5:, 2].values.reshape((-1, 1))
# 线性拟合
model = LinearRegression()
model.fit(X, y)
# 预测
predictions = model.predict(X_test)
for i, prediction in enumerate(predictions):
print('Predicted: %s, Target: %s' % (prediction, y_test[i]))
Predicted: [10.0625], Target: [11.]
Predicted: [10.28125], Target: [8.5]
Predicted: [13.09375], Target: [15.]
Predicted: [18.14583333], Target: [18.]
Predicted: [13.3125], Target: [11.]
# 模型评估
"""
使用 score 方法可以计算 R方
R方的范围为 [0, 1]
R方越接近 1,说明拟合程度越好
"""
print('R-squared: %.2f' % model.score(X_test, y_test))
R-squared: 0.77
此文原创禁止转载,转载文章请联系博主并注明来源和出处,谢谢!
作者: Raina_RLN https://www.cnblogs.com/raina/
机器学习4- 多元线性回归+Python实现的更多相关文章
- 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...
- 100天搞定机器学习|Day3多元线性回归
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也 ...
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- [机器学习Lesson4]多元线性回归
1. 多元线性回归定义 多元线性回归也被称为多元线性回归. 我们现在介绍方程的符号,我们可以有任意数量的输入变量. 这些多个特征的假设函数的多变量形式如下: hθ(x)=θ0+θ1x1+θ2x2+θ3 ...
- 梯度下降法的python代码实现(多元线性回归)
梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...
- 【机器学习】线性回归python实现
线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...
- day-12 python实现简单线性回归和多元线性回归算法
1.问题引入 在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变 ...
- 机器学习——Day 3 多元线性回归
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...
- 机器学习:单元线性回归(python简单实现)
文章简介 使用python简单实现机器学习中单元线性回归算法. 算法目的 该算法核心目的是为了求出假设函数h中多个theta的值,使得代入数据集合中的每个x,求得的h(x)与每个数据集合中的y的差值的 ...
随机推荐
- 利用mnist数据集进行深度神经网络
初始神经网络 这里要解决的问题是,将手写数字的灰度图像(28 像素 x28 像素)划分到 10 个类别中(0~9).我们将使用 MINST 数据集,它是机器学习领域的一个经典数据集,其历史几乎和这个领 ...
- mycli初体验
一.安装 pip install mycli 二.使用 mycli --help 三.特点 语法不全,高亮等
- can do / will do / should do 情态动词
can do = be able to do will do = be going to do should do = ought to do 情态动词 都是表示建议 从这里发现 to do (不确定 ...
- onOK Modal.warning iview 要写一个函数 套上,不然会得不到异步调用,直接弹出的时候就执行了
export const warning = (str, callback = _ => {}, outCallback = () => {}) => { Modal.warning ...
- Excel表格转Json数据结构
Excel表格转Json数据结构 辗转了好几个项目,每个项目的导表工具都巨难用,速度慢,潜规则多,扩展性差,不易于调试.Sqlite,Json,Lua,Xml各种格式都用过. 举个例子: 大多数导表工 ...
- CSS每日学习笔记(0)
7.29.2019 1. CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素 样式通常存储在样式表中 把样式添加到 HTML 4.0 中,是为了解 ...
- 关于MySQL数据库事务的机制学习总结
这几天面试多次被问到了数据库事务机制.隔离级别.乐观锁悲观锁类的问题,之前对这些只能说有所了解,有些概念还停留在记忆层面,没有理解,所以回答的不好.后面翻书学习了下,理解了一些东西,在此做一个记录. ...
- shell脚本基础-语法
一 变量 [root@T_FOOT-Home2-ZZZ01 ~]# a=hello [root@T_FOOT-Home2-ZZZ01 ~]# echo $a hello [root@T_FOOT-Ho ...
- 洛谷 P5596 【XR-4】题 题解
原题链接 本题只要 推式子 就可以了. \[y^2-x^2=ax + b \] \[a x + x^2 = y^2 - b \] \[4 x^2 + 4 ax = 4 y^2 - 4b \] \[(2 ...
- 图-连通分量-DFS-749. 隔离病毒
2020-03-17 21:56:20 问题描述: 病毒扩散得很快,现在你的任务是尽可能地通过安装防火墙来隔离病毒. 假设世界由二维矩阵组成,0 表示该区域未感染病毒,而 1 表示该区域已感染病毒.可 ...