YARN组件图

  • Container是YARN框架中对应资源的抽象,封装了运行节点上的资源(内存+CPU)

  • NodeManager负责Container状态的维护,通过心跳,把资源信息(剩余CPU、内存)传递给ResourceManager。

  • ResourceManager可以根据反馈的心跳决定可以调用的信息维护整个集群的资源状态数据。

    • 客户端提交任务会提交给ResourceManager。

    • ResourceManager向自身申请资源。

    • 申请资源后启动ApplicationMaster。

    • ResourceManager监控所有ApplicationMaster。

  • ApplicationMaster的主要职责:

    • 调度器索要根据客户端的调用启动每个Job的ApplicationMaster服务(启动前会申请资源)

    • 随时监控ApplicationMaster进程状况适当的资源容器,运行任务,跟踪应用程序的状态和监控它们的进程。

    • 处理任务的失败,重试。

    • 针对不同的任务(Job),会有不同的ApplicationMaster,比如启动MapReduce会执行MRpplicationMaster。

      • 如果存在Hadoop没有实现的ApplicationMaster,我们可以重写他的方法,实现我们自己需要的ApplicationMaster。

Job执行流程图

  1. 客户端提交任务会提交给ResourceManager,ResourceManager向自身申请资源。

  2. 申请资源后把Job信息发送给NodeManager,通知NodeManager调度自己的资源(container)启动ApplicationMaster。

  3. ApplicationMaster会根据Job信息,向ResourceManager申请现阶段要用的资源,比如MapReduce的Mapper阶段是不会申请Reduce阶段的资源的。

    • 申请的资源格式如下

    • Resource Manager会告诉ApplicationMaster允许使用的资源,如果只有1条就先返回1条。

    • 剩余需要的资源会继续请求

  4. ApplicationMaster获取到以后就会先调度这1条资源对应的Node Manager启动任务(Task)

    • Task就是真正的计算任务,比如Mapper。

    • 任务执行过程中,Task会向ApplicationMaster反馈任务进度、成功与否、报错信息。

    • ApplicationMaster根据反馈信息管理Task是终止还是继续进行、重新启动等。

    • Task完成以后ApplicationMaster会对Task做一个标记,执行成功、执行失败。

  5. 所有Task完成后,ApplicationMaster会对Job做一个标记,执行成功、执行失败。

Hadoop(八):YARN框架简介的更多相关文章

  1. Hadoop MapReduceV2(Yarn) 框架简介[转]

    对于业界的大数据存储及分布式处理系统来说,Hadoop 是耳熟能详的卓越开源分布式文件存储及处理框架,对于 Hadoop 框架的介绍在此不再累述,读者可参考 Hadoop 官方简介.使用和学习过老 H ...

  2. Hadoop MapReduceV2(Yarn) 框架简介

    http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/ 对于业界的大数据存储及分布式处理系统来说,Hadoop 是耳熟能详 ...

  3. Hadoop 新 MapReduce 框架 Yarn 详解【转】

    [转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/] 简介: 本文介绍了 Hadoop 自 0.23.0 版本 ...

  4. Hadoop 新 MapReduce 框架 Yarn 详解

    Hadoop 新 MapReduce 框架 Yarn 详解: http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/ Ap ...

  5. Hadoop学习之YARN框架

    转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/,非常感谢分享! 对于业界的大数据存储及分布式处理系统来说,H ...

  6. 更快、更强——解析Hadoop新一代MapReduce框架Yarn(CSDN)

    摘要:本文介绍了Hadoop 自0.23.0版本后新的MapReduce框架(Yarn)原理.优势.运作机制和配置方法等:着重介绍新的Yarn框架相对于原框架的差异及改进. 编者按:对于业界的大数据存 ...

  7. Hadoop Yarn框架详细解析

    在说Hadoop Yarn之前,我们先来看看Yarn是怎样出现的.在古老的Hadoop1.0中,MapReduce的JobTracker负责了太多的工作,包括资源调度,管理众多的TaskTracker ...

  8. hadoop备战:yarn框架的搭建(mapreduce2)

    昨天没有写好了没有更新,今天一起更新,yarn框架也是刚搭建好的. 我这里把hadoop放在了我的个人用户hadoop下了,你也能够尝试把它放在/usr/local,考虑的问题就相对多点. 主要的软硬 ...

  9. hadoop备战:yarn框架的简单介绍(mapreduce2)

    新 Hadoop Yarn 框架原理及运作机制 重构根本的思想是将 JobTracker 两个基本的功能分离成单独的组件,这两个功能是资源管理和任务调度 / 监控.新的资源管理器全局管理全部应用程序计 ...

随机推荐

  1. 解决mongo单文档超过16M

    mongodb导入大文件的数据时,导入一小部分后,提示lost connect,失去连接.mongo文件有6.3G,网上查了一下,原来Mongo对单次处理好像有大小限制(16m),所以大文件会出问题, ...

  2. java第二节课课后

    动手动脑问题 : 程序源代码: //MethodOverload.java //Using overloaded methods public class MethodOverload { publi ...

  3. ECCV 2018 目标检测 | IoU-Net:将IoU的作用发挥到极致

    常见的目标检测算法缺少了定位效果的学习,IoU-Net提出IoU predictor.IoU-guided NMS和Optimization-based bounding box refinement ...

  4. 第十八周java实验作业

    实验十八  总复习 实验时间 2018-12-30 1.实验目的与要求 (1) 综合掌握java基本程序结构: (2) 综合掌握java面向对象程序设计特点: (3) 综合掌握java GUI 程序设 ...

  5. 【短道速滑一】OpenCV中cvResize函数使用双线性插值缩小图像到长宽大小一半时速度飞快(比最近邻还快)之异象解析和自我实现。

    今天,一个朋友想使用我的SSE优化Demo里的双线性插值算法,他已经在项目里使用了OpenCV,因此,我就建议他直接使用OpenCV,朋友的程序非常注意效率和实时性(因为是处理视频),因此希望我能测试 ...

  6. 概率-拒绝采样 Rejection Sampling

    2018-12-09 16:40:30 一.使用Rand7()来生成Rand10() 问题描述: 问题求解: 这个问题字节跳动算法岗面试有问到类似的,有rand6,求rand8,我想了好久,最后给了一 ...

  7. PAT-B 1003. 我要通过!(20) Java版

    "答案正确"是自动判题系统给出的最令人欢喜的回复.本题属于PAT的"答案正确"大派送 -- 只要读入的字符串满足下列条件,系统就输出"答案正确&quo ...

  8. 使用Keras进行深度学习:(七)GRU讲解及实践

    ####欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 介绍 GRU(Gated Recurrent Unit) ...

  9. 使用FME裁剪矢量shapefile文件

  10. Springboot使用自定义注解实现简单参数加密解密(注解+HandlerMethodArgumentResolver)

    前言 我黄汉三又回来了,快半年没更新博客了,这半年来的经历实属不易,疫情当头,本人实习的公司没有跟员工共患难, 直接辞掉了很多人.作为一个实习生,本人也被无情开除了.所以本人又得重新准备找工作了. 算 ...