matlab计算相对功率
1、对脑电数据进行db4四层分解,因为脑电频率是在0-64HZ,分层后如图所示,
细节分量[d1 d2 d3 d4]
近似分量[a4]
重建细节分量和近似分量,然后计算对应频段得相对功率谱,重建出来得四个频段(αβθδ)都有14个通道,所以要计算4频段14通道共56个相对功率
2、代码
function wavelet(signal)
A4Array = zeros(14,5000);
D4Array = zeros(14,5000);
D3Array = zeros(14,5000);
D2Array = zeros(14,5000);
for i=1:14
[C,L] = wavedec(signal(i,1:5000),4,'db4');%函数返回 3 层分解的各组分系数C(连接在一个向量里) ,向量 L 里返回的是各组分的长度。
% [cD1,cD2,cD3,cD4] = detcoef(C,L,[1,2,3,4]);%抽取1234层细节系数
% cA4 = appcoef(C,L,'d4',4);%抽取近似系数
A4 = wrcoef('a',C,L,'db4',4);%重建4层近似,deta波
A4Array(i,:) = A4;
D4 = wrcoef('d',C,L,'db4',4);%重建4层细节,sita波
D4Array(i,:) = D4;
D3 = wrcoef('d',C,L,'db4',3);%重建3层细节,alpha波
D3Array(i,:) = D3;
D2 = wrcoef('d',C,L,'db4',2);%重建2层细节,beta波
D2Array(i,:) = D2;
end
detaspectral(signal,A4Array);
thetaspectral(signal,D4Array);
alphaspectral(signal,D3Array);
betaspectral(signal,D2Array);
end
detaspectral thetaspectral alphaspectral betaspectra的代码都是一样的
function alphaspectral(signal,dtest8theta)
Fs=128;
N=1024;Nfft=256;n=0:N-1;t=n/Fs;
window=hanning(256);
noverlap=128;
dflag='none';
for i=1:14
x=signal(i,1:5000);
powd(i,:)=psd(x,Nfft,Fs,window,noverlap,dflag);%计算未分频段,总数据的功率谱
x1=dtest8theta(i,:);%某一频段的脑电数据
powd1(i,:)=psd(x1,Nfft,Fs,window,noverlap,dflag);%计算该频段的功率谱
end
xdpowthetad = zeros(14,1);
xdpowthetad=mean(abs(powd1),2)./mean(abs(powd),2);%计算相对功率,用分频段功率谱比上不分频段的。
%save('G:\研三\音乐反馈数据\新算相对功率\xdpowthetad.mat','xdpowthetad');
save('C:\Users\25626\Desktop\滤波后数据\14\相对功率谱\5 3\alphaspectra.mat','xdpowthetad');
end
function detaspectral(signal,dtest8theta)
Fs=128;
N=1024;Nfft=256;n=0:N-1;t=n/Fs;
window=hanning(256);
noverlap=128;
dflag='none';
for i=1:14
x=signal(i,1:5000);
powd(i,:)=psd(x,Nfft,Fs,window,noverlap,dflag);%计算未分频段,总数据的功率谱
x1=dtest8theta(i,:);%某一频段的脑电数据
powd1(i,:)=psd(x1,Nfft,Fs,window,noverlap,dflag);%计算该频段的功率谱
end
xdpowthetad = zeros(14,1);
xdpowthetad=mean(abs(powd1),2)./mean(abs(powd),2);%计算相对功率,用分频段功率谱比上不分频段的。
%save('G:\研三\音乐反馈数据\新算相对功率\xdpowthetad.mat','xdpowthetad');
save('C:\Users\25626\Desktop\滤波后数据\14\相对功率谱\5 3\detaspectral.mat','xdpowthetad');
end
function betaspectral(signal,dtest8theta)
Fs=128;
N=1024;Nfft=256;n=0:N-1;t=n/Fs;
window=hanning(256);
noverlap=128;
dflag='none';
for i=1:14
x=signal(i,1:5000);
powd(i,:)=psd(x,Nfft,Fs,window,noverlap,dflag);%计算未分频段,总数据的功率谱
x1=dtest8theta(i,:);%某一频段的脑电数据
powd1(i,:)=psd(x1,Nfft,Fs,window,noverlap,dflag);%计算该频段的功率谱
end
xdpowthetad = zeros(14,1);
xdpowthetad=mean(abs(powd1),2)./mean(abs(powd),2);%计算相对功率,用分频段功率谱比上不分频段的。
%save('G:\研三\音乐反馈数据\新算相对功率\xdpowthetad.mat','xdpowthetad');
save('C:\Users\25626\Desktop\滤波后数据\14\相对功率谱\5 3\betaspectral.mat','xdpowthetad');
end
function thetaspectral(signal,dtest8theta)
Fs=128;
N=1024;Nfft=256;n=0:N-1;t=n/Fs;
window=hanning(256);
noverlap=128;
dflag='none';
for i=1:14
x=signal(i,1:5000);
powd(i,:)=psd(x,Nfft,Fs,window,noverlap,dflag);%计算未分频段,总数据的功率谱
x1=dtest8theta(i,:);%某一频段的脑电数据
powd1(i,:)=psd(x1,Nfft,Fs,window,noverlap,dflag);%计算该频段的功率谱
end
xdpowthetad = zeros(14,1);
xdpowthetad=mean(abs(powd1),2)./mean(abs(powd),2);%计算相对功率,用分频段功率谱比上不分频段的。
%save('G:\研三\音乐反馈数据\新算相对功率\xdpowthetad.mat','xdpowthetad');
save('C:\Users\25626\Desktop\滤波后数据\14\相对功率谱\5 3\thetaspectral.mat','xdpowthetad');
end
matlab计算相对功率的更多相关文章
- Matlab 计算大数的阶乘
http://hi.baidu.com/dreamflyman/item/11e920165596280fd0d66d9f >> syms k;>> kfac=sym('k!' ...
- Matlab计算矩阵和函数梯度
一.差分与微分 我自己的理解. 二.求解 2.1 矩阵 这就是matlab的计算结果.太小的话放大些: c = 4 5 9 7 2 1 5 2 6 >> [x,y]=gradient(c) ...
- Matlab计算矩阵间距离
夜深人静时分,宿舍就我自己,只有蚊子陪伴着我,我慢慢码下这段文字............ 感觉知识结构不完善:上学期看论文,发现类间离散度矩阵和类内离散度矩阵,然后百度,找不到,现在学模式识别,见了, ...
- Matlab计算的FFT与通过Origin计算的FFT
实验的过程中,经常需要对所采集的数据进行频谱分析,软件的选择对计算速度影响挺大的.我在实验过程中,通常使用Origin7.5来进行快速傅里叶变换,因为方便快捷,计算之后,绘出来的图也容易编辑.但是当数 ...
- numpy和matlab计算协方差矩阵的不同(matlab是标准的,numpy相当于转置后计算)
matlab是标准的,numpy相当于转置后计算 >> x = [2,0,-1.4;2.2,0.2,-1.5;2.4,0.1,-1;1.9,0,-1.2] x = 2.0000 0 ...
- 小小知识点(二十)利用MATLAB计算定积分
一重定积分 1. Z = trapz(X,Y,dim) 梯形数值积分,通过已知参数x,y按dim维使用梯形公式进行积分 %举例说明1 clc clear all % int(sin(x),0,pi) ...
- MatLab计算图像圆度
本文所述方法可以检测同一图像中的多个圆形(准确的说,应该是闭合图像). 在Matlab2010a中可以实现. 附录效果图: %颗粒圆度 clear;close all; %% %读取源图像 I = i ...
- matlab计算矩阵每列非0元素个数
在统计分析中,有时候需要计算矩阵每列非0元素的个数,可以用以下方法: 先用find找到每列不为0的元素index,然后用count计数. 假设有矩阵A[M,N], 结果存在countZeros cou ...
- 用matlab计算线性回归问题
看机器学习的时候遇到的第一个算法就是线性回归,高数中很详细的说明了线性回归的原理和最小2乘法的计算过程,很显然不适合手动计算,好在各种语言都有现成的函数使用,让我们愉快的做个调包侠吧 简单线性回归 R ...
随机推荐
- Python-函数练习题1
# coding=utf-8 '''定义一个方法get_num(num),num参数是列表类型,判断列表里面的元素为数字类型.其他类型则报错, 并且返回一个偶数列表:(注:列表里面的元素为偶数).'' ...
- django中间件 csrf auth认证
django中间件 能做全局访问频率限制,身份校验,黑名单,白名单 用法: 新建一个文件夹,文件夹新建一个py文件,文件中写如下代码 注意点:你写的类必须继续MiddlewareMixin from ...
- masql数据库的表查询
昨日回顾 表与表之间建关系 一对多 换位思考 图书与出版社 先站在左表: 考虑左表的多条数据能否对应右表的一条数据 翻译:多本书能否被一个出版社出版 可以! 注意:单站在一张得出的表关系并不能明确两张 ...
- hdu2492树状数组
题目链接:http://icpc.njust.edu.cn/Problem/Hdu/2492/ 题目大意:给定一个序列,求长度为三的子序列(a,b,c)使得a<b<c或a>b> ...
- 关于虚拟机NAT连接外网!!!
点开Virtual Network Editor(开始->VMware),选择vmnet8, NAT setting就可以知道了. 1. 虚拟机NAT和主机的通讯方式,是通过虚拟网关(即NAT ...
- vue-cli 引入axios及跨域使用
使用 cnpm 安装 axios cnpm install axios --save-dev 安装其他插件的时候,可以直接在 main.js 中引入并 Vue.use(),但是 axios 并不能 u ...
- SSM随笔
1.搭建基本web项目2.在WEB-INF下面添加lib和classes包,并修改路径3.拷贝jar包 主要包括spring包+spring依赖包+myBatis包+mysql驱动包4.编辑sprin ...
- ssh 解决经常断开与记住密码功能
一.解决ssh经常自动断开问题 修改 /etc/ssh/sshd_config 其中对应项为 ClientAliveInterval 30 ClientAliveCountMax 3 表示每30秒发一 ...
- Mysql数据库错误代码大全
Mysql数据库错误代码大全 出现较多的一些网页代码提示的意思: 1016错误:文件无法打开,使用后台修 ...
- 通过operator函数将字符串转换回运算符
需求 由于某些需要,将一些运算符做了列表,以便后续的程序判断传入的字符串中是否包含该列表中的某一个运算符,如果包含,就用该运算符做运算. 但该运算符已经转换是字符串了,没有办法做运算符用,经过全网搜索 ...