GraphicsLab Project 之 Curl Noise
作者:i_dovelemon
日期:2020-04-25
主题:Perlin Noise, Curl Noise, Finite Difference Method
引言
最近在研究流体效果相关的模拟。经过一番调查,发现很多的算法都基于一定的物理原理进行模拟,计算量相对来说都比较高昂。最终寻找到一个基于噪音实现的,可在视觉上模拟流体效果的方法:Curl Noise。题图就是通过 Curl Noise 模拟的流体向量场控制的百万粒子的效果。
背景知识
在讲解什么是 Curl Noise 之前,我们需要了解一些相关背景知识。
向量场(Vector Field)
一个2D 或者 3D 的向量场,表示的是赋予空间中任意点一个 2D 或者 3D 向量的函数。公式表示如下所示:
$\vec{F}\left(x,y \right)=P\left(x,y\right)\vec{i}+Q\left(x,y\right)\vec{j}$
$\vec{F}\left(x,y,z \right)=P\left(x,y,z\right)\vec{i}+Q\left(x,y,z\right)\vec{j}+R\left(x,y,z\right)\vec{k}$
其中,$P$,$Q$,$R$ 各表示一个标量函数,即它们的返回值是一个标量;$\vec{i}$,$\vec{j}$,$\vec{k}$ 各表示一个基向量。(参考文献[1])
上面数学的解释大家可能不熟悉,但是很多人或多或少的都看过向量场的图片形式,如下所示:
散度和旋度(Curl and Divergence)
首先,我们来定义一个 $\nabla$ 操作,如下所示:
$\nabla=\frac{\partial }{\partial x}\vec{i}+\frac{\partial }{\partial y}\vec{j}+\frac{\partial }{\partial z}\vec{k}$
其中$\partial$表示的是偏导数符号,不熟悉的读者可以去复习下微积分或者参考文献[2]。有了这个操作符之后,我们定义旋度为:
$curl\vec{F}=\nabla\times\vec{F}=(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x},\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})$
其中$\times$为叉积操作符(参考文献[3])。
有了旋度之后,我们再来定义散度,同样的,公式如下所示:
$div\vec{F}=\nabla\cdot \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$
特别的,散度和旋度之间有如下的一个关系:
$div(curl\vec{F})=0$
以上内容,参考文献[4]。
根据上面的公式,我们可以知道,对于一个向量场的旋度场,它的散度为 0,即它是一个无源场(Divergence-Free)。而一个散度为 0 的向量场,表示这个场是不可压缩的流体,这对日常所见的流体来说是一个很重要的视觉性质,所以据此我们可以使用一个场的旋度场来模拟流体效果。
Curl Noise
所谓 Curl Noise,即是对一个随机向量场,进行 Curl 操作之后得到的新场。因为满足散度为 0 的特性,所以这个场看上去就具有流体的视觉特性。如果用这个场作为速度去控制粒子,即可得到开头视频中流动的效果。
2D Curl Noise
前面我们说过,需要一个随机的向量场。这里我们使用 Perlin Noise 来进行模拟,关于 Perlin Noise 网上一堆资料,这里就不再赘述。
我们假设 Perlin Noise 的函数为:
$N(x,y)$
它的返回值是一个标量值。然后据此建立一个新的向量场:
$\vec{F}(x,y) = (N(x,y), N(x,y))$
然后对这个新的向量场进行 Curl 操作,即可得到旋度场。
前面只说过 3D 情况下的 Curl 操作是怎么样的,这里给出 2D 版本的 Curl 操作:
$curl\vec{F}(x, y) = (\frac{\partial N(x,y)}{\partial y}, -\frac{\partial N(x,y)}{\partial x})$
这里就只剩下了最后一个问题,那就是形如 $\frac{\partial N(x,y)}{\partial x}$ 这样的偏导数,该怎么计算。我们这里使用一个名为有限差分的方法(Finite Difference Method)来近似求解。
Finite Difference Method
根据文献[2]中对于偏导数的描述,我们知道 $\frac{\partial N(x,y)}{\partial x}$ 只是一种表达方式,它的精确表示方法为:
$\frac{\partial N(x,y)}{\partial x}= N_x(x,y) = \lim_{h\to0}{\frac{N(x + h,y)-N(x,y)}{h}}$
而后面极限的表达方式则给了我们近似计算这个偏导数的方法,只要给定一个较小的 $h$ 值,就能够近似的得到偏导数的结果。而这种计算方法即为:有限差分方法(Finite Difference Method)。
除了上面的极限表示方法之外,还有另外一种极限表示方法,如下所示:
$\frac{\partial N(x,y)}{\partial x}= N_x(x,y) = \lim_{h\to0}{\frac{N(x,y)-N(x-h,y)}{h}}$
这两种差分方法分别称之为前向差分(Forward Difference)和逆向差分(Backward Difference)方法。我这里主要使用逆向差分方法。
有了计算偏导数的方法之后,我们就可以实际带到 2D Curl 操作的公式进行计算,如下是计算 2D Curl Noise 的伪代码:
vec2 computeCurl(float x, float y)
{
float h = 0.0001f;
float n, n1, n2, a, b; n = N(x, y);
n1 = N(x, y - h);
n2 = N(x - h, y);
a = (n - n1) / h;
b = (n - n2) / h; return vec2(a, -b);
}
知道怎么计算 2D Curl Noise 之后,我们用计算出来的 Curl Noise 作为速度场去控制粒子进行运动,如下是 2D Curl Noise 控制粒子运动的效果:
3D Curl Noise
有了前面 2D Curl Noise 的实现,如法炮制的实现 3D Curl Noise 的推导。
3D Perlin Noise 函数定义为:
$N(x,y,z)$
以此构造出来的 3D 向量场为:
$\vec{F}(x,y,z)=(N(x,y,z),N(x,y,z)N(x,y,z))$
对这个场进行 Curl 操作,得到:
$curl\vec{F}=(\frac{\partial N(x,y,z)}{\partial y}-\frac{\partial N(x,y,z)}{\partial z},\frac{\partial N(x,y,z)}{\partial z}-\frac{\partial N(x,y,z)}{\partial x},\frac{\partial N(x,y,z)}{\partial x}-\frac{\partial N(x,y,z)}{\partial y})$
据此,给出计算 3D Curl Noise 的伪代码:
vec3 computeCurl(float x, float y)
{
vec3 curl;
float h = 0.0001f;
float n, n1, a, b; n = N(x, y, z); n1 = N(x, y - h, z);
a = (n - n1) / h; n1 = N(x, y, z - h);
b = (n - n1) / h;
curl.x = a - b; n1 = N(x, y, z - h);
a = (n - n1) / h; n1 = N(x - h, y, z);
b = (n - n1) / h;
curl.y = a - b; n1 = N(x - h, y, z);
a = (n - n1) / h; n1 = N(x, y - h, z);
b = (n - n1) / h;
curl.z = a - b; return curl;
}
以下是根据得到的 3D Curl Noise,并一次控制粒子进行运动的效果:
结论
Curl Noise 在游戏中有大量的运用,Unity 的粒子系统的 Noise Module 就内置了 Curl Noise 的实现。作为游戏开发的人员,很有必要了解下这个技术的原理,便于在实际开发中灵活运用。本文的主要原理来自于参考文献[5],感兴趣的可以深入去了解。
源代码已上传 Github:https://github.com/idovelemon/UnityProj/tree/master/CurlNoise 。
参考文献
[1] Section 5-1 : Vector Field
[2] Section 2-2:Partial Derivatives
[4] Section 6-1:Curl And Divergence
[5] Curl-Noise for Procedural Fluid Flow
GraphicsLab Project 之 Curl Noise的更多相关文章
- GraphicsLab Project之辉光(Glare,Glow)效果 【转】
作者:i_dovelemon 日期:2016 / 07 / 02 来源:CSDN 主题:Render to Texture, Post process, Glare, Glow, Multi-pass ...
- GraphicsLab Project学习项目
作者:i_dovelemon 日期:2016 / 05 / 30 主题:3D,Graphics 引言 进公司以来,主要在学习的就是如何保证代码的质量,以前热爱的图形学也放置了.但是,作为游戏程序员,特 ...
- GraphicsLab Project之Diffuse Irradiance Environment Map
作者:i_dovelemon 日期:2020-01-04 主题:Rendering Equation,Irradiance Environment Map,Spherical Harmonic 引言 ...
- 数字图像处理实验(11):PROJECT 05-02,Noise Reduction Using a Median Filter 标签: 图像处理MATLAB 2017-05-26 23:
实验要求: Objective: To understand the non-linearity of median filtering and its noise suppressing abili ...
- GraphicsLab Project 之 Screen Space Planar Reflection
作者:i_dovelemon 日期:2020-06-23 主题:Screen Space Planar Reflection, Compute Shader 引言 前段时间,同事发来一篇讲述特化版本的 ...
- GraphicsLab Project之再谈Shadow Map
作者:i_dovelemon 日期:2019-06-07 主题:Shadow Map(SM), Percentage Closer Filtering(PCF), Variance Shadow Ma ...
- 用体渲染的方法在Unity中渲染云(18/4/4更新)
github: https://github.com/yangrc1234/VolumeCloud 更新的内容在底部 最近在知乎上看到一篇文章讲云层的渲染(https://zhuanlan.zhihu ...
- libcurl教程
名称 libcurl 的编程教程 目标 本文档介绍使用libcurl编程的一般原则和一些基本方法.本文主要是介绍 c 语言的调用接口,同时也可能很好的适用于其他类 c 语言的接口. 跨平台的可移植代码 ...
- cocos2dx libcurl
转自:http://www.himigame.com/curl-libcurl/878.html 本篇介绍使用libcurl编程的一般原则和一些基本方法.本文主要是介绍 c 语言的调用接口,同时也可能 ...
随机推荐
- 面试刷题28:如何写出安全的java代码?
对jdk,jvm,java应用程序的攻击多种多样?那么从java程序员的角度,如何写出安全的代码呢? 我是李福春,我在准备面试,今天的题目是:如何写出安全的java代码? 答:这个需要从功能设计到实现 ...
- coding++:Java 中Model 与 实体的区别
model的字段>entity的字段,并且model的字段属性可以与entity不一致,model是用于前端页面数据展示的,而entity则是与数据库进行交互做存储用途. 举个例子: 比如在存储 ...
- localStorage中一个数组嵌套一个数组的怪相
localStorage中一个数组嵌套一个数组的怪相 需求:向本地存储中循环添加对象 思路 : 先完成点击事件中添加本地存储功能,当刷新时使用一个数组记录已经存储下来的数据,并在点击事件中将新生成 ...
- C#使用反射设置属性值
最近在Refix一个支持Excel文件导入导出功能时,发现有用到反射的相关技能.故而在网上查了些资料,通过代码调试加深下理解. class Program { static void Main(str ...
- H - 遥远的糖果 HihoCoder - 1478
给定一个N x M的01矩阵,其中1表示人,0表示糖.对于每一个位置,求出每个位置离糖的最短距离是多少. 矩阵中每个位置与它上下左右相邻的格子距离为1. Input 第一行包含两个整数,N和M. 以下 ...
- ASP.NET Core WEB API 使用element-ui文件上传组件el-upload执行手动文件文件,并在文件上传后清空文件
前言: 从开始学习Vue到使用element-ui-admin已经有将近快两年的时间了,在之前的开发中使用element-ui上传组件el-upload都是直接使用文件选取后立即选择上传,今天刚好做了 ...
- (CSS):last-child与:last-of-type区别
<!DOCTYPE html><html><head> <meta charset="utf-8"> <title>la ...
- egg.js部署到服务器
关于egg.js项目部署服务器的问题 我使用的是腾讯云centos , 部署前需要确保服务器上安装了mysql, node . mysql下载:https://dev.mysql.com/downlo ...
- redis 安装and对外开放端口
第一步: $ cd /usr/local/src $ wget http://download.redis.io/releases/redis-5.0.4.tar.gz $ tar xzf redis ...
- 页面DIV弹出层 JS原生脚本
<script type="text/javascript"> /* * 弹出DIV层 */ function showDiv() { ...