使用函数式API构建神经网络

函数式API相比于keras.Sequential()具有更加灵活多变的特点。

函数式API主要应用于多输入多输出的网络模型。

利用函数式API构建神经网络主要分为3步,1.构建输入层,2.构建中间层与输出层并连接神经层,3.生成神经网络模型。

1.构建输入层

输入层的构建较为简单,调用keras.Input()方法来构建输入层。

1 input = keras.Input(shape = (28, 28))

shape参数是输入数据的形状(这里输入的是一个28*28的二维数据)。

2.构建中间层与输出层并连接神经层

上一篇博客中有提到过,输出层与中间层的差别主要在于激活函数/分类器的选用上,其他部分大致相同,所以这里放在一起讲。

函数式API是把神经网络层作为函数相互调用以达到连接神经层变成神经网络的目的。

可以在构建神经层的时候直接连接,其结构与Sequential模型相似。

1 x = keras.layers.Flatten()(input) #调用函数式API
2 x = keras.layers.Dense(32, activation = "relu")(x)
3 x = keras.layers.Dropout(0.5)(x)
4 x = keras.layers.Dense(64, activation = "relu")(x)
5 output = keras.layers.Dense(10, activation = "softmax")(x)

或者是先构建神经层,再按照自己需要的顺序相连。

1 a = keras.layers.Flatten()(input)
2 b = keras.layers.Dense(32, activation = "relu")
3 b = b(a)
4 c = keras.layers.Dropout(0.5)
5 c = z(b)
6 d = keras.layers.Dense(64, activation = "relu")
7 d = d(c)
8 output = keras.layers.Dense(10, activation = "softmax")
9 output = output(d)

不难看出,使用函数式API相对繁琐,但是能看出它的灵活性远高于Sequential模型。

3.生成神经网络模型

使用keras.Model()方法生成网络模型

1 model = keras.Model(inputs = input, outputs = output)

参数分别是神经网络的输入和输出层。

最后使用.compile()方法和.fit()方法确定模型训练流程并训练即可。

Tensorflow学习笔记No.2的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  3. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  4. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. tensorflow学习笔记(4)-学习率

    tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...

  8. tensorflow学习笔记(3)前置数学知识

    tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4* ...

  9. tensorflow学习笔记(2)-反向传播

    tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...

  10. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

随机推荐

  1. android Studio(3.2.1) NDK配置

    1.创建as工程 2. 创建class类 3. 生成头文件 3.1 配置命令工具 添加工具: 配置工具: Program: $JDKPath$\bin\javah.exe Arugments:-d j ...

  2. Thymeleaf中model设一个值 页面显示此值 JS取此值

    model设值: m.addAttribute("pageNo", pageNo); 页面显示值: 当前为第:<span th:text="${pageNo}&qu ...

  3. 20190926-01Redis五大数据类型之List 000 027

  4. MySQL查询point类型类型的坐标,返回经度纬度

    location字段为point类型的空间坐标 SELECT id, name, address, x(location) as 经度, Y(location) as 纬度, ROUND( 6378. ...

  5. CentOS 7 安装部署 cassandra作为kairosdb的数据存储

    环境 Centos 7.4 java 1.8.0 安装步骤 java yum -y install java-1.8.0-openjdk* cassandra wget https://mirrors ...

  6. SEDA架构实现

    一.SEDA SEDA全称是:stage event driver architecture,中文直译为“分阶段的事件驱动架构”,它旨在结合事件驱动和多线程模式两者的优点,从而做到易扩展,解耦合,高并 ...

  7. python:列表生成式和三元表达式、匿名函数

    一.列表生成式 1.列表生成式就是python内置的一种用来生成list的生成式. 比如下面这个例子: l=[] for i in range(10) list.append(i) 生成一个列表要用循 ...

  8. Python 面试题 字符串 删除多少个字符使得出现做多的字符数量大于等于字符串长度的一半.

    str1 = input() num = {} for i in set(str1): num[i]=str1.count(i) max_value = max(num.values()) n=abs ...

  9. 你准备好开始DevOps了吗?

    前面一章节我们已经了解了Agile,CI/CD,DevOps,作为DevOps的起点,对于一个团队,如何开始自己的持续集成?根据我的经验,列出了一下需要考虑的点 1. 代码管理/分支策略 代码托管在哪 ...

  10. svn提交代码出错

    今天提交代码的时候一直报错,下面是错误信息 Error: Commit failed (details follow):  Error: Commit blocked by pre-commit ho ...