Problem Description
Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive
integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (L≤i<j≤R)
 

Input
There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.

In the next T lines, each line contains L, R which is mentioned above.

All input items are integers.

1<= T <= 1000000

2<=L < R<=1000000
 

Output
For each query,output the answer in a single line. 

See the sample for more details.
 

Sample Input

2
2 3
3 5
 

Sample Output

1

1

题意:定义了一个函数F(x),表示x这个数的不同素数因数的个数,然后给你一个区间[L,R],问你任意区间内不同的两个数的最大公约数是多少,这里要发现1000000范围内的最大不同素数因数个数是7,所以用dp[i][j]保存从1到i这i个数不同素数因数的个数。这里先预处理1~1000000的数的不同素数因数的个数,可以用普通素数筛法(这里线性筛法好像不能用,因为线性筛法只能求出这个数的素数因数个数和因数个数)。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define maxn 1000000
int vis[maxn+10],prime[maxn+10],tot,dp[maxn+10][10],cnt[maxn+10];
void init()
{
int i,j;cnt[1]=0;
for(i=2;i<=maxn;i++){
if(!vis[i]){
cnt[i]=1;
for(j=2*i;j<=maxn;j+=i){
vis[j]=1;
cnt[j]++;
}
}
}
for(i=1;i<=7;i++){
dp[1][i]=0;
}
for(i=2;i<=maxn;i++){
for(j=1;j<=7;j++){
dp[i][j]=dp[i-1][j];
}
dp[i][cnt[i]]++;
}
} int main()
{
int n,m,i,j,T;
int num1[10];
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=7;i++){
num1[i]=dp[m][i]-dp[n-1][i];
}
if(num1[7]>=2){
printf("7\n");continue;
}
if(num1[6]>=2){
printf("6\n");continue;
}
if(num1[5]>=2){
printf("5\n");continue;
}
if(num1[4]>=2){
printf("4\n");continue;
}
if(num1[3]>=2 || (num1[6]==1 && num1[3]==1)){
printf("3\n");continue;
}
if(num1[2]>=2 || (num1[6]==1 && num1[4]==1) || (num1[6]==1 && num1[2]==1) || (num1[4]==1 && num1[2]==1)){
printf("2\n");continue;
}
printf("1\n");
}
return 0;
}

hdu5317 RGCDQ的更多相关文章

  1. hdu5317 RGCDQ 统计

    // hdu5317 RGCDQ // // 题目大意: // // 给定一个闭区间[l,r],定义f(x)是x的不同的质因子的个数 // 比方: 12 = 2 * 2 * 3,是两种.所以f(x) ...

  2. 解题报告 之 HDU5317 RGCDQ

    解题报告 之 HDU5317 RGCDQ Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to ...

  3. hdu5317 RGCDQ (质因子种数+预处理)

    RGCDQ 题意:F(x)表示x的质因子的种数.给区间[L,R],求max(GCD(F(i),F(j)) (L≤i<j≤R).(2<=L < R<=1000000) 题解:可以 ...

  4. HDU-5317 RGCDQ ,暴力打表!

    RGCDQ 暴力水题,很可惜比赛时没有做出来,理清思路是很简单的. 题意:定义f(i)表示i的素因子个数,给你一段区间[l,r],求max_gcd(f(i),f(j)).具体细节参考题目. 思路:数据 ...

  5. HDU 5317 RGCDQ (数论素筛)

    RGCDQ Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  6. 数学+dp HDOJ 5317 RGCDQ

    题目传送门 /* 题意:给一个区间,问任意两个数的素数因子的GCD最大 数学+dp:预处理出f[i],发现f[i] <= 7,那么用dp[i][j] 记录前i个f[]个数为j的数有几个, dp[ ...

  7. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

  8. 2015 Multi-University Training Contest 3 1002 RGCDQ

    RGCDQ Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5317 Mean: 定义函数f(x)表示:x的不同素因子个数. 如:f ...

  9. HDU-5317

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. Openstack Nova 控制服务 和 计算服务 (六)

    Openstack Nova 控制服务 和 计算服务 (六) 引用: https://docs.openstack.org/ocata/zh_CN/install-guide-rdo/nova.htm ...

  2. C语言指针-从底层原理到花式技巧,用图文和代码帮你讲解透彻

    这是道哥的第014篇原创 目录 一.前言 二.变量与指针的本质 1. 内存地址 2. 32位与64位系统 3. 变量 4. 指针变量 5. 操作指针变量 5.1 指针变量自身的值 5.2 获取指针变量 ...

  3. 【Git】3、创建Git版本库、配置Git仓库用户邮箱信息

    初识Git 文章目录 初识Git 1.创建Git版本库 认识.git 2.基础配置 2.1.查看配置信息 2.2.配置昵称邮箱信息 2.3.修改配置信息 1.通过命令行 2.通过修改配置文件. 修改全 ...

  4. 【Linux】CentOS8 初体验

    一.部署CentOS8虚拟机 1.下载Centos8镜像 下载地址: https://www.centos.org/download/ 可以选择国内的下载源,比较快,这里推荐清华的和阿里的 2.下载完 ...

  5. kubernets之控制器之间的协作以及网络

    一  创建一个deployment的时候整个kubernets集群的资源和事件的调用链 1.1  创建一个deployment的资源,在提交的时候,集群中的调度器,控制器以及node节点上kubele ...

  6. 构造无字母数字Webshell

    异或: 补充: A的ascii为65,对应二进制是01000001 <?php echo "1"^"A"; ?> 将"A"和&q ...

  7. K8s遇到问题解决思路

    问题排查一 从describe去查找相应的deploy/pod/rs/svc [root@k8s-master ~]# kubectl describe po/nginx-f95d765f9-8b6b ...

  8. 2021年【线上】lammps分子动力学技术实战培训班

    材料模拟分子动力学课程 3月19号--22号 远程在线课 lammps分子动力学课程 3月12号--15号 远程在线课 第一性原理VASP实战课 3月25号-28号 远程在线课 量子化学Gaussia ...

  9. Promise用法

    1.概述 Promise是一步编程的一种解决方案,从语法上讲,promise是一个对象,从它可以获取异步的问题 Promise的优点: 可以避免多次异步调用嵌套导致的回调地域 提供了简洁的api,使得 ...

  10. Manachar’s Algorithm

    Manachar's Algorithm Longest palindromic substring - Wikipedia  https://en.wikipedia.org/wiki/Longes ...