• 题意:有\(n\)个物品,第\(i\)个物品价值\(v_{i}\),体积为\(w_{i}\),你有容量为\(W\)的背包,求能放物品的最大价值.

  • 题解:经典01背包,但是物品的最大体积给到了\(10^9\),dp数组下标会造成越界,因此我们不能用dp下标来存物品的体积,但是我们发现,物品的价值范围很小,所以我们反着想,枚举所有可能的总价值,dp数组下标表示可能的最大价值,值表示可能的最大的价值的最小体积,然后判断是否合法,维护最大价值.

  • 代码:

    int n,W;
    int w[N],v[N];
    int dp[N]; int main() {
    //ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    n=read();
    W=read();
    me(dp,INF,sizeof(dp)); dp[0]=0; for(int i=1;i<=n;++i){
    w[i]=read();
    v[i]=read();
    } int res=0; for(int i=1;i<=n;++i){
    for(int j=1e5;j>=v[i];--j){
    dp[j]=min(dp[j],dp[j-v[i]]+w[i]);
    if(dp[j]<=W) res=max(res,j);
    }
    } printf("%d\n",res); return 0;
    }

Educational DP Contest E - Knapsack 2 (01背包进阶版)的更多相关文章

  1. Atcoder E - Knapsack 2 (01背包进阶版 ex )

    E - Knapsack 2 Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement The ...

  2. Sth about Educational DP Contest

    Contest Website : atcoder.jp/contests/dp \[\begin{array}{c|C|c|c} TaskNum & TaskName & Statu ...

  3. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  4. poj 2184(dp变形,进一步加深01背包)

    点击打开链接 题意: 给你n个物品,每个物品都有两个属性,s和f,要求选择一些物品,使sum(s)+sum(f)最大,并且sum(s)>=0&&sum(f)>=0, 根据0 ...

  5. FZU - 2214 Knapsack problem 01背包逆思维

    Knapsack problem Given a set of n items, each with a weight w[i] and a value v[i], determine a way t ...

  6. Atcoder Educational DP Contest 题解

    A - Frog 1/B - Frog 2 入门... #include<cstdio> #define abs(a) ((a)>=0?(a):(-(a))) #define min ...

  7. Atcoder Educational DP Contest I - Coins (概率DP)

    题意:有\(n\)枚硬币,每枚硬币抛完后向上的概率为\(p[i]\),现在求抛完后向上的硬币个数大于向下的概率. 题解:我们用二维的\(dp[i][j]\)来表示状态,\(i\)表示当前抛的是第\(i ...

  8. Atcoder Educational DP Contest

    前面简单一点的题直接过吧. A 暴力DP B 怎么还是暴力DP C 还是暴力DP D 直接背包 E 这个背包不太一样了,这里有一个技巧,就是因为价值很小,所以直接对价值背包,求出来达到某一个权值最小的 ...

  9. 【DP】Educational DP Contest

    这份 dp 题单的最后几题好难 orz. 前面的题比较简单,所以我会选取一些题来讲,其它的直接看代码理解吧 qwq. 传送门: https://atcoder.jp/contests/dp 全部 AC ...

随机推荐

  1. SpringBoot 导入插件报错 Cannot resolve plugin org.springframework.boot:spring-boot-maven-plugin:2.4.1

    使用 maven 导入插件的时候报错: Cannot resolve plugin org.springframework.boot:spring-boot-maven-plugin:2.4.1 我的 ...

  2. (十一)time模块

    三种时间表示 在Python中,通常有这几种方式来表示时间: 时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量.我们运行"ty ...

  3. 【Spring】Spring的事务管理 - 2、声明式事务管理(实现基于XML、Annotation的方式。)

    声明式事务管理 文章目录 声明式事务管理 基于XML方式的声明式事务 基于Annotation方式的声明式事务 简单记录 - 简单记录-Java EE企业级应用开发教程(Spring+Spring M ...

  4. cursor pin s和cursor pin s wait on x

    1.cursor pin s是一个共享锁,一般情况下是因为发生在SQL短时间内大量执行 案例:在生产库中,突然出现大量的cursor pin s的等待,询问是否有动作后,同事说有编译存储过程(被误导了 ...

  5. JMM在X86下的原理与实现

    JMM在X86下的原理与实现 Java的happen-before模型 众所周知 Java有一个happen-before模型,可以帮助程序员隔离各个平台多线程并发的复杂性,只要Java程序员遵守ha ...

  6. LeetCode-P53题解【动态规划】

    本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: https://leetcode.com/problems/maximum-subarray/ ...

  7. 关于java并发场景下,HttpServletRequst中session丢失问题

    使用场景: 在list数据进来之后使用安全数组    Lists.newCopyOnWriteArrayList() 进行了   parallelStream  并行处理,在接口中进行了登录者信息接口 ...

  8. Bagging和Boosting的介绍及对比

    "团结就是力量"这句老话很好地表达了机器学习领域中强大「集成方法」的基本思想.总的来说,许多机器学习竞赛(包括 Kaggle)中最优秀的解决方案所采用的集成方法都建立在一个这样的假 ...

  9. centos 7.0 ping百度提示:ping: www.baidu.com: Name or service not known

    解决方法一: 添加dns服务器 vi /etc/resolv.conf 在文件中添加如下两行: nameserver 8.8.8.8 nameserver 8.8.4.4 保存退出,重启服务器.之后再 ...

  10. MySQL调优性能监控之performance schema

    一.performance_schema的介绍 performance:性能 schema:图(表)示,以大纲或模型的形式表示计划或理论. MySQL的performance schema 用于监控M ...