hdu 6814 Tetrahedron 规律+排列组合逆元
题意:
给你一个n,你需要从1到n(闭区间)中选出来三个数a,b,c(可以a=b=c),用它们构成一个直角四面体的三条棱(可看图),问你从D点到下面的三角形做一条垂线h,问你1/h2的期望
题解:
那么1/h2=1/a2+1/b2+1/c2
总数就是n3
之后就是找分子怎么求,规律:
a的取值从1到n
代码:
#include<stack>
#include<queue>
#include<map>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fi first
#define se second
using namespace std;
typedef long long ll;
const int maxn=6e6+1;
const int mod=998244353;
ll dp[maxn];
ll ksc(ll a, ll b)
{
ll ans = 0;
while( b > 0 )
{
if( b&1 ) ans = (ans + a) % mod;
a = ( a + a ) % mod;
b >>= 1;
}
return ans;
}
ll ppow(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1) ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans;
}
int main()
{
//printf("%d\n",(15*ppow(8,mod-2))%mod);
ll ans = 0;
for (ll i = 1; i <= 6000001; i++)
{
ll x = ((i * i) % mod);
ans = (ans + (ppow(x, mod - 2) % mod));
dp[i] = (ans * 3) % mod;
}
ll t;
scanf("%lld",&t);
while(t--)
{
ll n;
scanf("%lld",&n);
printf("%lld\n",(ksc(dp[n],ppow(n,mod-2)))%mod);
}
return 0;
}
hdu 6814 Tetrahedron 规律+排列组合逆元的更多相关文章
- hdu 6822 Paperfolding 规律+排列组合+逆元
题意: 给你一片纸,你可以对它进行四种操作,分别是向上.向下.向左.向右对折.把对折之后的纸片横向剪开,再纵向剪开(十字架剪开) 问你你能剪出来的纸片的期望个数 题解(参考:https://blog. ...
- 2017ACM暑期多校联合训练 - Team 1 1006 HDU 6038 Function (排列组合)
题目链接 Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m ...
- HDU5145:5145 ( NPY and girls ) (莫队算法+排列组合+逆元)
传送门 题意 给出n个数,m次访问,每次询问[L,R]的数有多少种排列 分析 \(n,m<=30000\),我们采用莫队算法,关键在于区间如何\(O(1)\)转移,由排列组合知识得到,如果加入一 ...
- 【bzoj 2339】[HNOI2011]卡农(数论--排列组合+逆元+递推)
题意:从编号为 1~N 的音阶中可选任意个数组成一个音乐片段,再集合组成音乐篇章.要求一个音乐篇章中的片段不可重复,都不为空,且出现的音符的次数都是偶数个.问组成 M 个片段的音乐篇章有多少种.答案取 ...
- 2018 Multi-University Training Contest 4 Problem B. Harvest of Apples 【莫队+排列组合+逆元预处理技巧】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6333 Problem B. Harvest of Apples Time Limit: 4000/200 ...
- Hdu 4465 Candy (快速排列组合+概率)
题目链接: Hdu 4465 Candy 题目描述: 有两个箱子,每个箱子有n颗糖果,抽中第一个箱子的概率为p,抽中另一个箱子的概率为1-p.每次选择一个箱子,有糖果就拿走一颗,没有就换另外一个箱子. ...
- hdu 5698 瞬间移动(排列组合)
这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...
- hdu 2519 新生晚会 排列组合
通过阶段性计算减少一次性的大值计算 #include <stdio.h> int main() { int t, a, b, i; __int64 c; scanf("%d&qu ...
- hdu 6114 chess(排列组合)
Chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
随机推荐
- Tomcat-8.5.23 基于域名和端口的虚拟主机
下载tomcat yum install java -y cd /opt/ wget http://mirror.bit.edu.cn/apache/tomcat/tomcat-8/v8.5.23/b ...
- Linux Bash Shell常用快捷键
Linux Bash Shell常用快捷键 table { margin: auto } 快捷键 功能 tab 补全 ctrl + a 光标回到命令行首 ctrl + e 光标回到命令行尾 ctrl ...
- 十二:SQL注入之简要注入
SQL注入漏洞将是重点漏洞,分为数据库类型,提交方法,数据类型等方式.此类漏洞是WEB漏洞中的核心漏洞,学习如何的利用,挖掘,和修复是重要的. SQL注入的危害 SQL注入的原理 可控变量,带入数据库 ...
- Linux 防火墙基于 CentOS7 的防火墙操作命令
防火墙服务操作命令 重启防火墙 systemctl restart firewalld 查看防火墙状态 systemctl status firewalld 开启.关闭.重启防火墙 # 开启 serv ...
- Databricks 第8篇:把Azure Data Lake Storage Gen2 (ADLS Gen 2)挂载到DBFS
DBFS使用dbutils实现存储服务的装载(mount.挂载),用户可以把Azure Data Lake Storage Gen2和Azure Blob Storage 账户装载到DBFS中.mou ...
- 【Azure 存储服务】Python模块(azure.cosmosdb.table)直接对表存储(Storage Account Table)做操作示例
什么是表存储 Azure 表存储是一项用于在云中存储结构化 NoSQL 数据的服务,通过无结构化的设计提供键/属性存储. 因为表存储无固定的数据结构要求,因此可以很容易地随着应用程序需求的发展使数据适 ...
- Linux的环境变量配置在/etc/profile或/etc/profile.d/*.sh文件中的区别是什么?
@ 目录 login shell non-login shell 它们的区别 Linux的环境变量可在多个文件中配置,如/etc/profile,/etc/profile.d/*.sh,~/.bash ...
- js 前端词典对象的属性和值读取
通常服务端返回比较奇葩的数据对象,不知道该怎么将这个对象转换为可用实体,想了很久,突发奇想想到了这么个方法. 需求是这样:企业有多个产品,产品有分为很几个种类.服务端有获取产品的接口,和单独获取产品种 ...
- win server 2019服务器的iis配置以及网站的简单发布
1.首先远程连接到服务器 2.打开服务器管理器 3添加角色和功能 4.安装类型:选择基于角色或基于功能的安装 →服务器角色:从服务器池中选择服务器 5.服务器角色选择Web服务器(iis) 6.功能 ...
- 客户端必须在它发送到服务器的所有帧中添加掩码(Mask)
在WebSocket协议中,数据是通过一系列数据帧来进行传输的.为了避免由于网络中介(例如一些拦截代理)或者一些在第10.3节讨论的安全原因,客户端必须在它发送到服务器的所有帧中添加掩码(Mask)( ...