LINK:5.15 T1



对于60分的暴力 都很水 就不一一赘述了.

由于是询问所有点的这种信息 确实不太会.

想了一下 如果只是询问子树内的话 dsu on tree还是可以做的。

可以自己思考一下.

如果强行dsu的时候做 会发现点对和点对之间难以解决。

考虑正解 点分治:

当x为分治中心还是需要统计点对和点对之间的贡献.

和刚才几乎一样.不过这个时候可以发现 需要对每个点都求一个答案.

对于深度为w的点 那么 贡献为\(\sum_{j=w}^{n}c_{j-w}a_j\)

其中\(c_x\)表示当前深度为x的点的个数 不过这个可能统计到自己的那条链中的答案.

不过可以再对每个子树内做一遍 减掉即可。

那么我们发现这样做的话 每一个深度的点 答案其实是一样的.

这样对于上面的东西 其实可以看成是一个卷积.

这个卷积比较奇特 是相减的形式 可以变形 两边同时加上n-1就变成了正常的卷积。

对于重复的 可以发现可以被减掉 所以这样做事正确的。

值域原因 不能使用NTT 所以上FFT 常数太大可以选择预处理单位根.

const int MAXN=600010;
const db Pi=acos(-1.0);
int n,root,lim,len;
int w[MAXN],sz[MAXN],son[MAXN],c[MAXN],ans[MAXN],vis[MAXN];
int lin[MAXN],ver[MAXN],nex[MAXN],rev[MAXN],v[MAXN],d[MAXN];
struct wy
{
db r,v;
wy(db x=0,db y=0){r=x;v=y;}
wy friend operator *(wy a,wy b){return wy(a.r*b.r-a.v*b.v,a.r*b.v+b.r*a.v);}
wy friend operator +(wy a,wy b){return wy(a.r+b.r,a.v+b.v);}
wy friend operator -(wy a,wy b){return wy(a.r-b.r,a.v-b.v);}
}A[MAXN],B[MAXN],w0[20][MAXN],w1[20][MAXN];
inline void add(int x,int y)
{
ver[++len]=y;nex[len]=lin[x];lin[x]=len;
ver[++len]=x;nex[len]=lin[y];lin[y]=len;
}
inline void get_root(int x,int fa,int n)
{
sz[x]=1,son[x]=0;
go(x)if(tn!=fa&&!vis[tn])
{
get_root(tn,x,n);
sz[x]+=sz[tn];
son[x]=max(son[x],sz[tn]);
}
son[x]=max(son[x],n-sz[x]);
if(son[x]<son[root])root=x;
}
inline void get_dis(int x,int fa,int dep)
{
d[x]=dep;++c[d[x]];
go(x)if(tn!=fa&&!vis[tn])get_dis(tn,x,dep+1);
}
inline void FFT(wy *a,int op)
{
rep(0,lim-1,i)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int len=2,cc=0;len<=lim;len=len<<1,++cc)
{
int mid=len>>1;
for(int j=0;j<lim;j+=len)
{
for(int i=0;i<mid;++i)
{
wy x=a[i+j],y=a[i+j+mid]*(op==-1?w1[cc][i]:w0[cc][i]);
a[i+j]=x+y;a[i+j+mid]=x-y;
}
}
}
if(op==-1)rep(0,lim-1,i)a[i].r=a[i].r/lim;
}
inline void js(int n)
{
reverse(c,c+n);
int sz1=n,sz2=n+n-1;
lim=1;
while(lim<sz1+sz2-1)lim=lim<<1;
rep(0,lim-1,i)rev[i]=rev[i>>1]>>1|((i&1)?lim>>1:0);
rep(0,sz1-1,i)A[i]=wy(c[i],0);rep(sz1,lim-1,i)A[i]=wy(0,0);
rep(0,sz2-1,i)B[i]=wy(w[i],0);rep(sz2,lim-1,i)B[i]=wy(0,0);
FFT(A,1);FFT(B,1);
rep(0,lim-1,i)A[i]=A[i]*B[i];
FFT(A,-1);
rep(0,n-1,i)v[i]=(int)(A[i+n-1].r+0.5);
}
inline void get_ans(int x,int fa,int op)
{
if(op)ans[x]+=v[d[x]];
else ans[x]-=v[d[x]];
go(x)if(tn!=fa&&!vis[tn])
get_ans(tn,x,op);
}
inline void solve(int x,int n,int op)
{
if(op)
{
rep(0,n,i)c[i]=0;
get_dis(x,0,1);
js(n+1);
get_ans(x,0,0);
}
//if(dep>30){cout<<"ww"<<endl;exit(0);}
root=0;get_root(x,0,n);
//cout<<root<<' '<<son[root]<<' '<<sz[root]<<endl;
rep(0,n,i)c[i]=0;
get_dis(root,0,0);
vis[root]=1;js(n);
get_ans(root,0,1);
int ww=root;
go(ww)
if(!vis[tn])
{
//cout<<(sz[tn]>sz[ww]?n-sz[ww]:sz[tn])<<endl;
solve(tn,sz[tn]>sz[ww]?n-sz[ww]:sz[tn],1);
}
}
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
get(n);
rep(0,n-1,i)get(w[i]);
rep(2,n,i)add(read(),read());
for(int i=2,j=0;j<20;i=i<<1,++j)
{
int mid=i>>1;
wy wn=wy(cos(Pi/mid),sin(Pi/mid));
wy d=wy(1,0);
for(int k=0;k<mid;++k)
{
w0[j][k]=d;w1[j][k]=d;
w1[j][k].v=-w1[j][k].v;
d=d*wn;
}
}
son[0]=n+1;solve(1,n,0);
rep(1,n,i)put_(ans[i]);
return 0;
}

5.15 省选模拟赛 T1 点分治 FFT的更多相关文章

  1. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  2. 6.15 省选模拟赛 老魔杖 博弈论 SG函数

    这道题确实没有一个很好的解决办法 唯一的正解可能就是打表找规律 或者 直接猜结论了吧. 尽管如此 在此也给最终结论一个完整的证明. 对于70分 容易发现状态数量不大 可以进行暴力dp求SG函数. 原本 ...

  3. 5.15 省选模拟赛 容斥 生成函数 dp

    LINK:5.15 T2 个人感觉生成函数更无脑 容斥也好推的样子. 容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数. 容易得到转移 使用前缀和优 ...

  4. NOI 2019 省选模拟赛 T1【JZOJ6082】 染色问题(color) (多项式,数论优化)

    题面 一根长为 n 的无色纸条,每个位置依次编号为 1,2,3,-,n ,m 次操作,第 i 次操作把纸条的一段区间 [l,r] (l <= r , l,r ∈ {1,2,3,-,n})涂成颜色 ...

  5. 洛谷[LnOI2019]长脖子鹿省选模拟赛t1 -> 快速多项式变换

    快速多项式 做法:刚拿到此题有点蒙,一开始真没想出来怎么做,于是试着去自己写几个例子. 自己枚举几种情况之后就基本看出来了,其实本题中 n 就是f(m)在m进制下的位数,每项的系数就是f(m)在m进制 ...

  6. 5.20 省选模拟赛 T1 图 启发式合并 线段树合并 染色计数问题

    LINK:图 在说这道题之前吐槽一下今天的日子 520 = 1+1+4+514. /cy 这道题今天做的非常失败 一点分都没拿到手 关键是今天的T3 把我整个人给搞崩了. 先考虑 如果得到了这么一张图 ...

  7. 5.19 省选模拟赛 T1 小B的棋盘 双指针 性质

    LINK:小B的棋盘 考试的时候没有认真的思考 导致没做出来. 容易发现 当k>=n的时候存在无限解 其余都存在有限解 对于30分 容易想到暴力枚举 对称中心 然后 n^2判断. 对于前者 容易 ...

  8. 4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat

    好题 np. 对于20分 显然可以爆搜. 对于50分 可以发现每个字符串上的问号要么是0,要么是1.考虑枚举一个字符串当前是0还是1 这会和其他字符串产生矛盾. 所以容易 发现这是一个2-sat问题. ...

  9. 20180610模拟赛T1——脱离地牢

    Description 在一个神秘的国度里,年轻的王子Paris与美丽的公主Helen在一起过着幸福的生活.他们都随身带有一块带磁性的阴阳魔法石,身居地狱的魔王Satan早就想着得到这两块石头了,只要 ...

随机推荐

  1. html实现邮箱发送邮件_js发送邮件至指定邮箱功能

    在前端开发中,JavaScript并没有提供直接操作Email邮箱的功能方法,但是遇到这样的需求,我们应该如何实现js发送邮件至指定邮箱功能呢?下面列举能够在通过前端实现邮件发送的几种方式: 方式一: ...

  2. CSS的引入与选择器

    CSS的引入与选择器 CSS与HTML的关系 Cascading Style Sheet 即层叠样式表 在上一篇文中,已经介绍了一些非常常用的HTML标签,接下来将步入CSS的学习,如果将单纯HTML ...

  3. java学习第六天2020/7/11

    一. 今天先是对昨天的知识进行了练习: package 数组; import java.util.Random; import java.util.Arrays; public class 随机数排序 ...

  4. C#-性能-二维数组和数组的数组的性能比较

    两者是3:2的消耗比例 const int NUM = 10000; int[,] vec = new int[NUM, NUM]; Stopwatch sw = Stopwatch.StartNew ...

  5. 【五学x红小豆xRS】两边三地大联动-句型

    <第五共和国> Tohara LY Sara'm, Sabang Chua Setuk KS Kareh Moh Induree Junchi Chueh? 阁下!和这样的虫豸在一起,怎么 ...

  6. noi linux gedit 配置(c++环境)

    基本配置 方法一 查看所有命令: gsettings list-recursively | grep -i gedit 命令解释 gsettings set org.gnome.gedit.prefe ...

  7. DP学习记录Ⅰ

    DP学习记录Ⅱ 前言 状态定义,转移方程,边界处理,这三部分想好了,就问题不大了.重点在状态定义,转移方程是基于状态定义的,边界处理是方便转移方程的开始的.因此最好先在纸上写出自己状态的意义,越详细越 ...

  8. three.js 数学方法之Matrix3

    今天郭先生来说一说three.js的三维矩阵,这块知识需要结合线性代数的一些知识,毕业时间有点长,线性代数的知识大部分都还给了老师.于是一起简单的复习了一下.所有的计算都是使用列优先顺序进行的.然而, ...

  9. python 结合redis 队列 做一个例子

    结合redis 队列 做了一个例子 #!/usr/bin/env python # coding: utf-8 # @Time : 2018/12/21 0021 13:57 # @Site : # ...

  10. Nginx配置中文参数说明

    #定义Nginx运行的用户和用户组 user www www; # #nginx进程数,建议设置为等于CPU总核心数. worker_processes 8; # #全局错误日志定义类型,[ debu ...