用x种方式求第n项斐波那契数,99%的人只会第一种
大家好啊,我们又见面了。听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧。
本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧。
原文链接:原文来自个人公众号:C you again,欢迎关注
斐波那契数列
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。
斐波那契数列指的是这样一个数列:
0、1、1、2、3、5、8、13、21、34......
有一组数列,它的第一项为1,第二项为1,从第三项开始,每一项为前两项之和。
斐波那契数列的第n项Fn可以通过如下的递归公式定义:
F(1)=1,F(2)=1,
F(n)=F(n-1)+F(n-2)(n ≥ 3,n ∈ N*)
通项公式
如上,又称为“比内公式”,是用无理数表示有理数的一个范例。
注:此时a1=1,a2=1,a(n)=a(n-1)+a(n-2),(n ≥ 3,n ∈ N*)
求第n项斐波那契数
现在写一个函数int fib(int n) 返回第n项Fn。例如,若n=0,则函数fib(0)应该返回0,若n=1, 则函数fib(1)应返回1,若 n > 1,返回 F(n-1)+F(n-2)。
若n = 9
输出:34
下面是返回斐波那契数列第n项Fn的不同方法:
方法1 (使用递归)
一个简捷的方法是直接使用递归定义关系式写出递归实现的代码,C/C++代码如下:
//Fibonacci Series using Recursion
#include<stdio.h>
int fib(int n) {
if (n <= 1)
return n;
return fib(n - 1) + fib(n - 2);
}
int main() {
int n = 9;
printf("%d", fib(n));
return 0;
}
输出:34
时间复杂度:T(n) = T(n-1) + T(n-2),该时间复杂度是指数级别的
空间复杂度:如果考虑递归调用时栈的大小,则为O(n) ;如果不考虑调用栈的话,则为O(1)
通过观察,我们可以发现递归求解时做了很多重复的工作(见下面的递归调用树)。因此采用递归方式求解斐波那契数列的第n项Fn不是一种好的方法。
方法2 (使用动态规划Dynamic Programming:DP)
如果你还不了解动态规划,请看以下两篇文章:
在方法1中,在求解某项时,如果我们把计算结果存储起来,则后续的计算就可以使用前面的计算结果,从而可以避免很多重复的计算,C/C++代码如下:
//Fibonacci Series using Dynamic Programming
#include<stdio.h>
int fib(int n) {
/* Declare an array to store Fibonacci numbers. */
int f[n + 1];
int i;
/* 0th and 1st number of the series are 0 and 1*/
f[0] = 0;
f[1] = 1;
for (i = 2; i <= n; i++) {
/* Add the previous 2 numbers in the series
and store it */
f[i] = f[i - 1] + f[i - 2];
}
return f[n];
}
int main() {
int n = 9;
printf("%d", fib(n));
return 0;
}
输出:34
时间复杂度:O(n)
空间复杂度: O(n)
方法3 (对方法2进行空间上的优化)
由于在计算某项时只需其前面相邻的两项,因此可以对方法2中的空间进行优化,C/C++代码如下:
// Fibonacci Series using Space Optimized Method
#include<stdio.h>
int fib(int n) {
int a = 0, b = 1, c, i;
if (n == 0)
return a;
for (i = 2; i <= n; i++) {
c = a + b;
a = b;
b = c;
}
return b;
}
int main() {
int n = 9;
printf("%d", fib(n));
return 0;
}
输出:34
时间复杂度: O(n)
空间复杂度: O(1)
当然,也可以使用滚动数组。滚动数组不是什么高大上的技术,我们在计算斐波那契数列的过程中,始终使用相邻的前两项,加上正在计算的项,总共就三项,因此可以定义一个长度只有3的数组,可以滚动地使用0、1、2这三个下标。代码如下:
//Fibonacci Series using Dynamic Programming
#include<stdio.h>
int fib(int n) {
/* Declare an array to store Fibonacci numbers. */
int f[3]; /* 只需定义一个长度为3的数组 */
int i;
/* 0th and 1st number of the series are 0 and 1*/
f[0] = 0;
f[1] = 1;
for (i = 2; i <= n; i++) {
/* Add the previous 2 numbers in the series
and store it:注意下标要对3取模 */
f[i % 3] = f[(i - 1) % 3] + f[(i - 2) % 3];
}
return f[n % 3]; /* 这里要注意下标对3取模 */
}
int main() {
int n = 9;
printf("%d", fib(n));
return 0;
}
方法4 (使用矩阵{{1,1},{1,0}}的幂)
另外一种复杂度为O(n)的方法是对矩阵M={{1,1},{1,0}}自乘n次(换句话说,就是计算矩阵M的n次幂:power(M,n)), 这样就可以在结果矩阵下标为(0, 0)的地方得到斐波那契数列的第(n+1)项,如下所示:
#include <stdio.h>
/* Helper function that multiplies 2 matrices F and M of size 2*2, and puts the multiplication result back to F[][] */
void multiply(int F[2][2], int M[2][2]);
/* Helper function that calculates F[][] raise to the power n and puts the result in F[][]。Note that this function is designed only for fib() and won't work as general power function */
void power(int F[2][2], int n);
int fib(int n) {
int F[2][2] = { { 1, 1 }, { 1, 0 } };
if (n == 0)
return 0;
power(F, n - 1);
return F[0][0];
}
void multiply(int F[2][2], int M[2][2]) {
int x = F[0][0] * M[0][0] + F[0][1] * M[1][0];
int y = F[0][0] * M[0][1] + F[0][1] * M[1][1];
int z = F[1][0] * M[0][0] + F[1][1] * M[1][0];
int w = F[1][0] * M[0][1] + F[1][1] * M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
void power(int F[2][2], int n) {
int i;
int M[2][2] = { { 1, 1 }, { 1, 0 } };
// n - 1 times multiply the matrix to {{1,0},{0,1}}
for (i = 2; i <= n; i++)
multiply(F, M);
}
/* Driver program to test above function */
int main() {
int n = 9;
printf("%d", fib(n));
return 0;
}
输出:34
时间复杂度: O(n)
空间复杂度: O(1)
方法 5 (对方法4进行优化 )
上面的方法4可以优化到)的时间复杂度。我们可以像计算x^n那样,采用递归的方式来计算power(M, n) ,C/C++代码如下:
#include <stdio.h>
void multiply(int F[2][2], int M[2][2]);
void power(int F[2][2], int n);
/* function that returns nth Fibonacci number */
int fib(int n) {
int F[2][2] = { { 1, 1 }, { 1, 0 } };
if (n == 0)
return 0;
power(F, n - 1);
return F[0][0];
}
/* Optimized version of power() in method 4 */
void power(int F[2][2], int n) {
if (n == 0 || n == 1)
return;
int M[2][2] = { { 1, 1 }, { 1, 0 } };
power(F, n / 2);
multiply(F, F);
if (n % 2 != 0)
multiply(F, M);
}
void multiply(int F[2][2], int M[2][2]) {
int x = F[0][0] * M[0][0] + F[0][1] * M[1][0];
int y = F[0][0] * M[0][1] + F[0][1] * M[1][1];
int z = F[1][0] * M[0][0] + F[1][1] * M[1][0];
int w = F[1][0] * M[0][1] + F[1][1] * M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
/* Driver program to test above function */
int main() {
int n = 9;
printf("%d", fib(n));
return 0;
}
输出:34
时间复杂度: O(Logn)
空间复杂度: 如果考虑递归调用时栈的大小,则为O(n) ;如果不考虑调用栈的话,则为O(1)
方法 6 (O(Log n) 的时间复杂度)
下面是一个很有趣的计算斐波那契数列第n项的递归公式,该公式的时间复杂度为O(Log n)。
如果n是偶数, 则k=n/2,
F(n)=[2F(k-1)+F(k)]F(k)
如果n是奇数,则 k=(n+1)/2
F(n)=F(k)F(k)+F(k-1)F(k-1)
原文链接:原文来自个人公众号:C you again,欢迎关注
该公式是如何计算的?上面的公式可以从前面的矩阵幂推算出来:
要证明上面的公式成立,只需做下面的工作即可:
如果n是偶数, 令 k = n/2
如果n是奇数, 令 k = (n+1)/2
下面是上述过程的C++ 实现:
// C++ Program to find n'th fibonacci Number in
// with O(Log n) arithmatic operations
#include <bits/stdc++.h>
using namespace std;
const int MAX = 1000;
// Create an array for memoization
int f[MAX] = { 0 };
// Returns n'th fuibonacci number using table f[]
int fib(int n) {
// Base cases
if (n == 0)
return 0;
if (n == 1 || n == 2)
return (f[n] = 1);
// If fib(n) is already computed
if (f[n])
return f[n];
int k = (n & 1) ? (n + 1) / 2 : n / 2;
// Applyting above formula [Note value n&1 is 1
// if n is odd, else 0.
f[n] = (n & 1) ?
(fib(k) * fib(k) + fib(k - 1) * fib(k - 1)) :
(2 * fib(k - 1) + fib(k)) * fib(k);
return f[n];
}
/* Driver program to test above function */
int main() {
int n = 9;
printf("%d ", fib(n));
return 0;
}
输出:34
时间复杂度为:O(Log n) ,因为每次递归调用时都将问题规模降了一半
方法 7 (使用Java提供的BigInteger类)
Java提供了BigInteger类,可以很轻易地算出当n很大时的斐波那契数。
// Java program to compute n-th Fibonacci number where n may be large.
import java.math.*;
public class Fibonacci {
// Returns n-th Fibonacci number
static BigInteger fib(int n) {
BigInteger a = BigInteger.valueOf(0);
BigInteger b = BigInteger.valueOf(1);
BigInteger c = BigInteger.valueOf(1);
for (int j = 2; j <= n; j++) {
c = a.add(b);
a = b;
b = c;
}
return (a);
}
public static void main(String[] args) {
int n = 1000;
System.out.println("Fibonacci of " + n + "th term" + " " + "is" + " " + fib(n));
}
}
当n=1000时,输入结果如下:
原文链接:原文来自个人公众号:C you again,欢迎关注
公众号推荐(资源加油站)
了解更多资源请关注个人公众号:C you again,你将收获以下资源
1、PPT模板免费下载,简历模板免费下载
2、基于web的机票预订系统,基于web的图书管理系统
3、贪吃蛇小游戏源码
4、各类IT技术分享
文章推荐
推荐一:计算机网络中这些高频考题,你还在死记硬背吗?(一),讲述内容:IP地址及其分类,子网掩码的概念,网络号、主机号、直接广播地址计算方法等。
推荐二:计算机网络中这些高频考题,你还在死记硬背吗?(二),讲述内容:局域网接口配置、路由器的静态路由配置、OSPF动态路由协议配置和DHCP服务器配置。
以上就是本期的所有内容了,是否对你有帮助呢?了解更多算法请关注公众号“C you again”。
用x种方式求第n项斐波那契数,99%的人只会第一种的更多相关文章
- 非递归和递归分别实现求第n个斐波那契数。
菲波那切数列为:0 1 1 2 3 5 8 13 21 34... 规律:从第三个数字起后面的每一个数字都是前两个数字的和. 非递归算法: #include<stdio.h> int ma ...
- 【C++】【斐波那契】求第几个斐波那契数字。
首先在头文件 whichfibonaccinumber.h 中写了一个使用加法的解法.没有验证输入数字是否小于0. #ifndef WHICHFIBONACCINUMBER_H_ #define WH ...
- POJ 3070(求斐波那契数 矩阵快速幂)
题意就是求第 n 个斐波那契数. 由于时间和内存限制,显然不能直接暴力解或者打表,想到用矩阵快速幂的做法. 代码如下: #include <cstdio> using namespace ...
- 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...
- C++求斐波那契数
题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...
- python递归方式和普通方式实现输出和查询斐波那契数列
●斐波那契数列 斐波那契数列(Fibonacci sequence),是从1,1开始,后面每一项等于前面两项之和. 如果为了方便可以用递归实现,要是为了性能更好就用循环. ◆递归方式实现生成前30个斐 ...
- hdu1568&&hdu3117 求斐波那契数前四位和后四位
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=2 ...
- HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】
Fibonacci Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Proble ...
- Java算法求最大最小值,冒泡排序,斐波纳契数列一些经典算法<不断更新中>
清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2, ...
随机推荐
- loadRunnner中90%的响应时间
参考博客https://blog.csdn.net/lengyue_112/article/details/1095320?utm_source=blogxgwz4 LR在场景执行完了会出个报告,其中 ...
- Nacos学习笔记
Nacos简介 Nacos 提供了一组简单易用的特性集,帮助您快速实现动态服务发现.服务配置.服务元数据及流量管理.Nacos 帮助更敏捷和容易地构建.交付和管理微服务平台. Nacos 是构建以“服 ...
- Apache Dubbo Provider默认反序列漏洞复现(CVE-2020-1948)
Apache Dubbo Provider默认反序列漏洞(CVE-2020-1948) 0x01 搭建漏洞环境 漏洞介绍 2020年06月23日, 360CERT监测发现Apache Dubbo 官方 ...
- vue基础入门(2.3)
2.3.样式绑定 2.3.1.绑定class样式 1.绑定单个class <!DOCTYPE html> <html lang="en"> <head ...
- python读取文件路径
不同系统对文件路径的分割符不同: 在Windows系统下的分隔符是:\ (反斜杠). 在Linux系统下的分隔符是:/(斜杠). 绝对路径和相对路径 绝对路径就是文件的真正存在的路径,是指从硬盘的根目 ...
- vs2017,vs2019 无法连接到Web服务器“IIS Express”
不知道啥原因,突然就不能访问了 我的解决方式: 在项目的根目录下显示所有隐藏的文件,找到.vs文件夹,删除: 重启项目,尝试运行,发现正常了. (完)
- DBMS_METADATA.GET_DDL查出不存在的列SYS_C00014_20070116:47:09$
DBMS_METADATA.GET_DDL查出不存在的列SYS_C00014_20070116:47:09$ 前言 很久很久以前,有多久呢? 有多久了,等等我看下截图的日期(溜︿( ̄︶ ̄)︿). 哦, ...
- Windows 10 搭键开源IDS-Snort,简单过滤注入
关于Snort snort有三种工作模式:嗅探器.数据包记录器.网络入侵检测系统.嗅探器模式仅仅是从网络上读取数据包并作为连续不断的流显示在终端上.数据包记录器模式把数据包记录到硬盘上.网路入侵检测模 ...
- web前端开发_文件/目录/样式/函数等命名规范
页面的命名规则 统一用翻译的英文命名(推荐) 统一用拼音命名(拼音的简化也可) 如果文件名过长,企业要提前约定一份缩写的规范,如pro—product 例如: 首页—index 产品列表—prolis ...
- JS数组与对象赋值问题
在W3C的在线编程中经过测试发现以下问题: 当一个数组内部元素为对象时,给数组赋值应该先给对象赋值,然后把该对象push到数组中. 如下所示: 在控制台打印之后的数据格式为下图所示: 如果在给数组赋值 ...