摘要:脏数据对数据计算的正确性带来了很严重的影响。因此,我们需要探索一种方法,能够实现Spark写入Elasticsearch数据的可靠性与正确性。

概述

Spark与Elasticsearch(es)的结合,是近年来大数据解决方案很火热的一个话题。一个是出色的分布式计算引擎,另一个是出色的搜索引擎。近年来,越来越多的成熟方案落地到行业产品中,包括我们耳熟能详的Spark+ES+HBase日志分析平台。

目前,华为云数据湖探索(DLI)服务已全面支持Spark/Flink跨源访问Elasticsearch。而之前在实现过程中也遇到过很多场景化问题,本文将挑选其中比较经典的分布式一致性问题进行探讨。

分布式一致性问题

问题描述

数据容错是大数据计算引擎面临的主要问题之一。目前,主流的开源大数据比如Apache Spark和Apache Flink已经完全实现了Exactly Once语义,保证了内部数据处理的正确性。但是在将计算结果写入到外部数据源时,因为外部数据源架构与访问方式的多样性,始终没能找到一个统一的解决方案来保证一致性(我们称为Sink算子一致性问题)。再加上es本身没有事务处理的能力,因此如何保证写入es数据一致性成为了热点话题。

我们举一个简单的例子来说明一下,图1在SparkRDD中(这里假设是一个task),每一条蓝色的线代表100万条数据,那么10条蓝色的线表示了有1000万条数据准备写入到CSS(华为云搜索服务,内部为es)的某个index中。在写入过程中,系统发生了故障,导致只有一半(500万条)数据成功写入。

task是Spark执行任务的最小单元,如果task失败了,当前task需要整个重新执行。所以,当我们重新执行写入操作(图2),并最终重试成功之后(这次用红色来表示相同的1000万条数据),上一次失败留下的500万条数据依然存在(蓝色的线),变成脏数据。脏数据对数据计算的正确性带来了很严重的影响。因此,我们需要探索一种方法,能够实现Spark写入es数据的可靠性与正确性。

图1 Spark task失败时向es写入了部分数据

图2 task重试成功后上一次写入的部分数据成为脏数据

解决方案

1.写覆盖

从上图中,我们可以很直观的看出来,每次task插入数据前,先将es的index中的数据都清空就可以了。那么,每次写入操作可以看成是以下3个步骤的组合:

  • 步骤一 判断当前index中是否有数据
  • 步骤二 清空当前index中的数据
  • 步骤三 向index中写入数据

换一种角度,我们可以理解为,不管之前是否执行了数据写入,也不管之前数据写入了多少次,我们只想要保证当前这一次写入能够独立且正确地完成,这种思想我们称为幂等。

幂等式写入是大数据sink算子解决一致性问题的一种常见思路,另一种说法叫做最终一致性,其中最简单的做法就是“insert overwrite”。当Spark数据写入es失败并尝试重新执行的时候,利用覆盖式写入,可以将index中的残留数据覆盖掉。

图 使用overwrite模式,task重试时覆盖上一次数据

在DLI中,可以在DataFrame接口里将mode设置成“overwrite”来实现覆盖写es:

val dfWriter = sparkSession.createDataFrame(rdd, schema)

//
// 写入数据至es
//
dfWriter.write
.format("es")
.option("es.resource", resource)
.option("es.nodes", nodes)
.mode(SaveMode.Overwrite)
.save()

也可以直接使用sql语句:

// 插入数据至es
sparkSession.sql("insert overwrite table es_table values(1, 'John'),(2, 'Bob')")

2.最终一致性

利用上述“overwrite”的方式解决容错问题有一个很大的缺陷。如果es已经存在了正确的数据,这次只是需要追加写入。那么overwrite会把之前index的正确的数据都覆盖掉。

比如说,有多个task并发执行写入数据的操作,其中一个task执行失败而其他task执行成功,重新执行失败的task进行“overwrite”会将其他已经成功写入的数据覆盖掉。再比如说,Streaming场景中,每一批次数据写入都变成覆盖,这是不合理的方式。

图 Spark追加数据写入es

图 用overwrite写入会将原先正确的数据覆盖掉

其实,我们想做的事情,只是清理脏数据而不是所有index中的数据。因此,核心问题变成了如何识别脏数据?借鉴其他数据库解决方案,我们似乎可以找到方法。在MySQL中,有一个insert ignore into的语法,如果遇到主键冲突,能够单单对这一行数据进行忽略操作,而如果没有冲突,则进行普通的插入操作。这样就可以将覆盖数据的力度细化到了行级别。

es中有类似的功能么?假如es中每一条数据都有主键,主键冲突时可以进行覆盖(忽略和覆盖其实都能解决这个问题),那么在task失败重试时,就可以仅针对脏数据进行覆盖。

我们先来看一下Elasticsearch中的概念与关系型数据库之间的一种对照关系:

我们知道,MySQL中的主键是对于一行数据(Row)的唯一标识。从表中可以看到,Row对应的就是es中的Document。那么,Document有没有唯一的标识呢?

答案是肯定的,每一个Document都有一个id,即doc_id。doc_id是可配置的,index、type、doc_id三者指定了唯一的一条数据(Document)。并且,在插入es时,index、type、doc_id相同,原先的document数据将会被覆盖掉。因此,doc_id可以等效于“MySQL主键冲突忽略插入”功能,即“doc_id冲突覆盖插入”功能。

因此,DLI的SQL语法中提供了配置项“es.mapping.id”,可以指定一个字段作为Document id,例如:

create table es_table(id int, name string) using es options(
'es.nodes' 'localhost:9200',
'es.resource' '/mytest/anytype',
'es.mapping.id' 'id')")

这里指定了字段“id”作为es的doc_id,当插入数据时,字段“id”的值将成为插入Document的id。值得注意的是,“id”的值要唯一,否则相同的“id”将会使数据被覆盖。

这时,如果遇到作业或者task失败的情况,直接重新执行即可。当最终作业执行成功时,es中将不会出现残留的脏数据,即实现了最终一致性。

图 在插入数据时将主键设为doc_id,利用幂等插入来实现最终一致性

总结

本文可以一句话总结为“利用doc_id实现写入es的最终一致性”。而这种问题,实际上不需要如此大费周章的探索,因为在es的原生API中,插入数据是需要指定doc_id,这应该是一个基本常识:详细API说明可以参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html

图 es使用bulk接口进行数据写入

权当消遣,聊以慰藉。

得益于Base理论,最终一致性成为分布式计算中重要的解决方案之一。尽管该解决方案还有一定的限制(比如本文的解决方案中数据必须使用主键),而业界还有很多分布式一致性的解决方案(比如2PC、3PC)。但个人认为,衡量工作量与最终效果,最终一致性是一种很有效且很简约的解决方案。

扩展阅读:Elasticsearch Datasource

简介

Datasource是Apache Spark提供的访问外部数据源的统一接口。Spark提供了SPI机制对Datasource进行了插件式管理,可以通过Spark的Datasource模块自定义访问Elasticsearch的逻辑。

华为云DLI(数据湖探索)服务已完全实现了es datasource功能,用户只要通过简单的SQL语句或者Spark DataFrame API就能实现Spark访问es。

功能描述

通过Spark访问es,可以在DLI官方文档中找到详细资料:https://support.huaweicloud.com/usermanual-dli/dli_01_0410.html。(Elasticsearch是由华为云CSS云搜索服务提供)。

可以使用Spark DataFrame API方式来进行数据的读写:

//
// 初始化设置
// // 设置es的/index/type(es 6.x版本不支持同一个index中存在多个type,7.x版本不支持设置type)
val resource = "/mytest/anytype"; // 设置es的连接地址(格式为”node1:port,node2:port...”,因为es的replica机制,即使访问es集群,只需要配置一个地址即可.)
val nodes = "localhost:9200" // 构造数据
val schema = StructType(Seq(StructField("id", IntegerType, false), StructField("name", StringType, false)))
val rdd = sparkSession.sparkContext.parallelize(Seq(Row(, "John"),Row(,"Bob")))
val dfWriter = sparkSession.createDataFrame(rdd, schema) //
// 写入数据至es
//
dfWriter.write
.format("es")
.option("es.resource", resource)
.option("es.nodes", nodes)
.mode(SaveMode.Append)
.save() //
// 从es读取数据
//
val dfReader = sparkSession.read.format("es").option("es.resource",resource).option("es.nodes", nodes).load()
dfReader.show()

也可以使用Spark SQL来访问:

// 创建一张关联es /index/type的Spark临时表,该表并不存放实际数据
val sparkSession = SparkSession.builder().getOrCreate()
sparkSession.sql("create table es_table(id int, name string) using es options(
'es.nodes' 'localhost:9200',
'es.resource' '/mytest/anytype')") // 插入数据至es
sparkSession.sql("insert into es_table values(1, 'John'),(2, 'Bob')") // 从es中读取数据
val dataFrame = sparkSession.sql("select * from es_table")
dataFrame.show()

点击关注,第一时间了解华为云新鲜技术~

数据湖应用解析:Spark on Elasticsearch一致性问题的更多相关文章

  1. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  2. 使用spark访问elasticsearch的数据

    使用spark访问elasticsearch的数据,前提是spark能访问hive,hive能访问es http://blog.csdn.net/ggz631047367/article/detail ...

  3. 使用Apache Spark和Apache Hudi构建分析数据湖

    1. 引入 大多数现代数据湖都是基于某种分布式文件系统(DFS),如HDFS或基于云的存储,如AWS S3构建的.遵循的基本原则之一是文件的"一次写入多次读取"访问模型.这对于处理 ...

  4. 大数据技术之_19_Spark学习_01_Spark 基础解析 + Spark 概述 + Spark 集群安装 + 执行 Spark 程序

    第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2 ...

  5. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

  6. 初创电商公司Drop的数据湖实践

    欢迎关注微信公众号:ApacheHudi 1. 引入 Drop是一个智能的奖励平台,旨在通过奖励会员在他们喜爱的品牌购物时获得的Drop积分来提升会员的生活,同时帮助他们发现与他们生活方式产生共鸣的新 ...

  7. 使用Apache Hudi构建大规模、事务性数据湖

    一个近期由Hudi PMC & Uber Senior Engineering Manager Nishith Agarwal分享的Talk 关于Nishith Agarwal更详细的介绍,主 ...

  8. Apache Hudi表自动同步至阿里云数据湖分析DLA

    1. 引入 Hudi 0.6.0版本之前只支持将Hudi表同步到Hive或者兼容Hive的MetaStore中,对于云上其他使用与Hive不同SQL语法MetaStore则无法支持,为解决这个问题,近 ...

  9. 印度最大在线食品杂货公司Grofers的数据湖建设之路

    1. 起源 作为印度最大的在线杂货公司的数据工程师,我们面临的主要挑战之一是让数据在整个组织中的更易用.但当评估这一目标时,我们意识到数据管道频繁出现错误已经导致业务团队对数据失去信心,结果导致他们永 ...

随机推荐

  1. springboot 2.X 集成redis

    在实际开发中,经常会引入redis中间件做缓存,这里介绍springboot2.X后如何配置redis 1 Maven中引入redis springboot官方通过spring-boot-autoco ...

  2. spring boot actuator扩展httptrace的记录

    SpringBoot记录HTTP请求日志 1.需求解读 需求: 框架需要记录每一个HTTP请求的信息,包括请求路径.请求参数.响应状态.返回参数.请求耗时等信息. 需求解读: Springboot框架 ...

  3. laravel生成key失败

    laravel生成key失败 生成KEY失败.原因是没有复制.env文件 In KeyGenerateCommand.php line 96: file_get_contents(D:\project ...

  4. Docker 基础知识 - Docker 概述

    Docker 是一个开发.发布和运行应用程序的开放平台.Docker使您能够将应用程序与基础架构分离,以便快速交付软件.有了 Docker,你可以像管理应用程序一样管理你的基础设施.通过利用 Dock ...

  5. Python实用笔记 (24)面向对象高级编程——使用@property

    这显然不合逻辑.为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数: clas ...

  6. SpringBoot2.x的依赖管理

    前提 这篇文章是<SpringBoot2.x入门>专辑的第1篇文章,使用的SpringBoot版本为2.3.1.RELEASE,JDK版本为1.8. 主要梳理一下SpringBoot2.x ...

  7. Spring Cloud Alibaba基础教程:Nacos 生产级版本 0.8.0

    昨晚Nacos社区发布了第一个生产级版本:0.8.0.由于该版本除了Bug修复之外,还提供了几个生产管理非常重要的特性,所以觉得还是有必要写一篇讲讲这次升级,在后续的文章中也都将以0.8.0版本为基础 ...

  8. MysqlException: max pool size was reached.

    2019-09-09 08:22:08.620 +00:00 [ERR] Connection id "0HLPKVK52H2OU", Request id "0HLPK ...

  9. MySQL Error (Always Continue)

    MySQL Error (Always Continue)   其实大部分error在网上都有对应的解决办法,尤其是对Mysql这种使用范围很广的技术.自己就不为每个error单独发布博客了,仅在这里 ...

  10. 线性DP之小烈送菜

    小烈送菜 小烈一下碰碰车就被乐满地的工作人员抓住了.作为扰乱秩序的惩罚,小烈必须去乐满地里的"漓江村"饭店端盘子. 服务员的工作很繁忙.他们要上菜,同时要使顾客们尽量高兴.一位服务 ...