这题初赛让我白给了6分,于是我决定回来解决一下它。

说实话,看原题题面和看CCF代码真是两种完全不同的感受……

------------
思路分析:

把$s$串删去一部分之后,会把$s$串分成两部分,当然其中一部分有可能为空。$t$串作为$s$串的字串,在删去一部分之后也会被分为两部分。因此我们可以枚举$t$串被分开的位置,然后进行计算。

设$t$串在$t[p]$和$t[p+1]$之间被分开,$s$串在$s[i]$和$s[i+1]$之间被分开。因为要使答案最大,因此我们要让$s$串的左半部分包含且仅包含一个$t$串的左半部分,右半部分也是一样。

因此,按照CCF的讲法,设$s$串和$t$串的长度分别为$slen$和$tlen$,我们可以设$head[i]=p$表示$s[0...i]$包含且仅包含一个子串为$t[0...p]$,设$back[i]=p$表示$s[i...slen-1]$包含且仅包含一个字串为$t[p...tlen-1]$。

如何递推$head$和$back$数组?很显然了,用两个指针分别指向$s$串和$t$串,表示当前位置,相同即匹配成功。

因为指针初值需要设置为0,因此以下代码将$s$串和$t$串都整体后移了一位。

p=;
for(int i=;i<s.size();i++)
{
head[i]=head[i-];
if(s[i]==t[p])
head[i]=p++;
}
p=t.size()-;back[s.size()]=t.size();
for(int i=s.size()-;i;i--)
{
back[i]=back[i+];
if(s[i]==t[p])
back[i]=p--;
}

递推出$head$和$back$数组后,枚举断点计算答案就行了。用两个指针$i,j$分别指向删除的部分两端。为了让答案最大,应该找到满足$head[i]=p$的最小的$i$,以及满足$back[j]=p+1$的最大的$j$,这两个步骤用两个while循环就可以轻松搞定了。有一个需要注意的点,当被分开的两部分其中一部分包含整个$t$串时,另一部分取空串是最优的,这个需要特判一下。答案即为$j-i-1$。计算答案时也要特判不合法的情况。各个指针的初值也需要注意。

#include<iostream>
#include<cstdio>
#include<string>
using namespace std;
const int N=1e6;
int p=,ans;
int head[N],back[N];
string s,t;
int main()
{
cin>>s>>t;s='.'+s,t='.'+t;//后移一位
for(int i=;i<s.size();i++)
{
head[i]=head[i-];
if(s[i]==t[p])
head[i]=p++;
}
p=t.size()-;back[s.size()]=t.size();
for(int i=s.size()-;i;i--)
{
back[i]=back[i+];
if(s[i]==t[p])
back[i]=p--;
}
p=;
for(int i=,j=;i<s.size(),j<s.size(),p<t.size();p++)
{
while(head[i]<p && i<s.size())
i++;
while(back[j+]<=p+ && j<s.size())
j++;//找到最优的i和j
if(p==t.size()-)
j=s.size();//贪心地让另一部分为空串
if(i<s.size() && j<=s.size())//合法才更新答案
ans=max(ans,j-i-);
}
printf("%d",ans);
return ;
}

因为指针$i,j$一定是递增的,因此时间复杂度$O(n)$。

------------
既然是初赛原题,那么再来看看CCF的代码:(实测比我的代码快15ms...不过我的代码有的地方常数的确比较大)

#include<iostream>
#include<string>
using namespace std;
const int maxl=1e6;//改了一下数组大小,可以过困难版
string s,t;
int pre[maxl],suf[maxl];//分别相当于head和back数组 int main(){
cin>>s>>t;
int slen=s.length(),tlen=t.length();
for(int i=,j=;i<slen;++i){
if(j<tlen && s[i]==t[j]) ++j;
pre[i]=j;
}
for(int i=slen-,j=tlen-;i>=;--i){
if(j>= && s[i]==t[j]) --j;
suf[i]=j;
}
suf[slen]=tlen-;//递推基本相同,表示略有区别
int ans=;
for(int i=,j=,tmp=;i<=slen;++i){
while(j<=slen && tmp>=suf[j]+) ++j;
ans=max(ans,j-i-);
tmp=pre[i];
}
cout<<ans<<endl;
return ;
}

可以发现思路实际上大体相同,但是计算答案时略有差别。

分析一下这个计算答案的过程,枚举$s$的断点。可以发现,对于当前的循环,$tmp=pre[i-1]$,即$t[0...tmp-1]$是$s[0...i-1]$的字串,那么接下来为了使答案最大,应该找到满足$t[tmp...tlen-1]$是$s[j...slen-1]$的$j$。而这份代码中的while循环找到的$j$应该会比我们要找的$j$大1,因此要删除的部分就是$s[i...j-2]$,长度$j-i-1$。

然后分析一下题目:(理解了题意之后感觉想错都难qwq)

1.

Q:程序输出时,suf数组满足:对于任意$0\leq i\leq slen$,$suf[i]\leq suf[i+1]$。

A:T,显然$suf$数组是递增的。

2.

Q:当$t$是$s$的子序列时,输出一定不为0。

A:F,反例样例3。

3.

Q:程序运行到第23行时,“j-i-1”一定不小于0。

A:F,在本题中的确不会出现这种情况,但初赛题目中可没保证$t$是$s$的子串,$t$不是$s$的字串时就会出现这种情况。

4.

Q:当$t$是$s$的子序列时,$pre$数组和$suf$数组满足:对于任意$0\leq i<slen$,$pre[i]>suf[i+1]+1$。

A:F,反例样例1。

5.

Q:若$tlen=10$,输出为0,则$slen$最小为( )。

A:输出为0说明$t$不是$s$的子序列或者$s=t$,显然前者可以使答案更小,即$t$越短越好。由于cin不能输入空串,因此最短只能是1。

6.

Q:若$tlen=10$,输出为2,则$slen$最小为( )。

A:$s$最多删去两个字符使$t$仍是$s$的字串,显然$t$串最短长度为12。

最后祝大家CSP-J/S 2019rp++。

CF1203D2 Remove the Substring (hard version) 题解的更多相关文章

  1. D2. Remove the Substring (hard version)(思维 )

    D2. Remove the Substring (hard version) time limit per test 2 seconds memory limit per test 256 mega ...

  2. CF #579 (Div. 3) D1.Remove the Substring (easy version)

    D1.Remove the Substring (easy version) time limit per test2 seconds memory limit per test256 megabyt ...

  3. D2. Remove the Substring (hard version)

    D2. Remove the Substring (hard version) 给字符串s,t,保证t为s的子序列,求s删掉最长多长的子串,满足t仍为s的子序列 记录t中每个字母在s中出现的最右的位置 ...

  4. Codeforces 1196D2 RGB Substring (Hard version) 题解

    题面 \(q\) 个询问,每个询问给出一个字符串 \(s\),要你在 \(s\) 中用最小替换得到无穷字符串 RGBRGBRGB... 的长度为定值 \(k\) 的子串. 题解 一眼看过去可能是编辑距 ...

  5. Codeforces Round #579 (Div. 3) D2. Remove the Substring (hard version) (思维,贪心)

    题意:给你一个模式串\(t\),现在要在主串\(s\)中删除多个子串,使得得到的\(s\)的子序列依然包含\(t\),问能删除的最长子串长度. 题解:首先,我们不难想到,我们可以选择\(s\)头部到最 ...

  6. 双指针(最大删除子串)Codeforces Round #579 (Div. 3)--Remove the Substring (hard version)

    题目链接:https://codeforces.com/contest/1203/problem/D2 题意: 给你S串.T串,问你最长删除多长的子串使得S串里仍然有T的子序列. 思路: 想了好久,先 ...

  7. Codeforces - 1203D2 - Remove the Substring (hard version) - 双指针

    https://codeforces.com/contest/1203/problem/D2 上次学了双指针求两个字符串之间的是否t是s的子序列.但其实这个双指针可以求出的是s的前i个位置中匹配t的最 ...

  8. Remove the Substring

    D2. Remove the Substring (hard version) 思路:其实就是贪心吧,先从前往后找,找到 t 可在 s 中存在的最小位置 (pre),再从后往前找,找到 t 可在 s ...

  9. Codeforces Round #575 (Div. 3) D2. RGB Substring (hard version) 【递推】

    一.题目 D2. RGB Substring (hard version) 二.分析 思路一开始就想的对的,但是,用memset给数组初始化为0超时了!超时了! 然后我按照题解改了个vector初始化 ...

随机推荐

  1. PHP md5_file() 函数

    实例 计算文本文件 "test.txt" 的 MD5 散列: <?php高佣联盟 www.cgewang.com$filename = "test.txt" ...

  2. ElasticSearch 基础入门 and 操作索引 and 操作文档

    基本概念 索引: 类似于MySQL的表.索引的结构为全文搜索作准备,不存储原始的数据. 索引可以做分布式.每一个索引有一个或者多个分片 shard.每一个分片可以有多个副本 replica. 文档: ...

  3. HTML与XHTML之间的区别

    HTML与XHTML之间的差别,粗略可以分为两大类比较:一个是功能上的差别,另外是书写习惯的差别.关于功能上的差别,主要是XHTML可兼容各大浏览器.手机以及PDA,并且浏览器也能快速正确地编译网页. ...

  4. [转]Spring Security架构

    作者:before31原文:https://my.oschina.net/xuezi/blog/3126351 本指南是Spring Security的入门,它提供了对该框架的设计和基本构建的见解.我 ...

  5. 学Java必看!零基础小白再也不用退缩了

    程序员们!请往这儿看 对于JAVA的学习,可能你还会有许多的顾虑 不要担心 接着往下看吧 学Java前 一.数学差,英语也不好是不是学不好Java? 答案是:是~ 因为你在问这个问题的时候说明你对自己 ...

  6. 树状图展示终端目录内容-tree

    以树状图列出目录的内容,让你一目了然 执行 tree 指令,它会列出指定目录下的所有文件,包括子目录里的文件. 安装 我们通过包管理工具可以方便的安装它 mac - brew install tree ...

  7. 还在纠结学什么编程语言吗?Python可能会“教”你做人

    这几年为什么Python在中国就火起来了? Python这个东西国,大概是从2017年末开始,突然就火了起来的.此前,对于Python,乃至编程,绝大多数程度上都是专业人士的话题,在普通大众层面上起不 ...

  8. MySQL数据库高可用方案

    一.什么是高可用性: 高可用性=可靠性,它的本质就是通过技术和工具提高可靠性,尽可能长时间保持数据可用和系统运行,实现高可用性的原则,首先要消除单点故障,其次通过冗余机制实现快速恢复,还有就是实现容错 ...

  9. Grazing on the Run 题解

    [题目大意] 大致题意就是,你的初始坐标为\(x\),你要去数轴上的\(n\)个点,问你到达所有点的时间总和最小是多少. 直接贪心肯定不行,所以考虑\(DP\) 先把坐标离散(也就是预处理两点距离\( ...

  10. JS学习第六天

    匿名函数: 定义:function(参数列表){ 要执行的语句块: } 定义名(): 创建日期对象:Date var date=new Date(); alert(date);  不输入则是默认月,日 ...