CF1203D2 Remove the Substring (hard version) 题解
这题初赛让我白给了6分,于是我决定回来解决一下它。
说实话,看原题题面和看CCF代码真是两种完全不同的感受……
------------
思路分析:
把$s$串删去一部分之后,会把$s$串分成两部分,当然其中一部分有可能为空。$t$串作为$s$串的字串,在删去一部分之后也会被分为两部分。因此我们可以枚举$t$串被分开的位置,然后进行计算。
设$t$串在$t[p]$和$t[p+1]$之间被分开,$s$串在$s[i]$和$s[i+1]$之间被分开。因为要使答案最大,因此我们要让$s$串的左半部分包含且仅包含一个$t$串的左半部分,右半部分也是一样。
因此,按照CCF的讲法,设$s$串和$t$串的长度分别为$slen$和$tlen$,我们可以设$head[i]=p$表示$s[0...i]$包含且仅包含一个子串为$t[0...p]$,设$back[i]=p$表示$s[i...slen-1]$包含且仅包含一个字串为$t[p...tlen-1]$。
如何递推$head$和$back$数组?很显然了,用两个指针分别指向$s$串和$t$串,表示当前位置,相同即匹配成功。
因为指针初值需要设置为0,因此以下代码将$s$串和$t$串都整体后移了一位。
p=;
for(int i=;i<s.size();i++)
{
head[i]=head[i-];
if(s[i]==t[p])
head[i]=p++;
}
p=t.size()-;back[s.size()]=t.size();
for(int i=s.size()-;i;i--)
{
back[i]=back[i+];
if(s[i]==t[p])
back[i]=p--;
}
递推出$head$和$back$数组后,枚举断点计算答案就行了。用两个指针$i,j$分别指向删除的部分两端。为了让答案最大,应该找到满足$head[i]=p$的最小的$i$,以及满足$back[j]=p+1$的最大的$j$,这两个步骤用两个while循环就可以轻松搞定了。有一个需要注意的点,当被分开的两部分其中一部分包含整个$t$串时,另一部分取空串是最优的,这个需要特判一下。答案即为$j-i-1$。计算答案时也要特判不合法的情况。各个指针的初值也需要注意。
#include<iostream>
#include<cstdio>
#include<string>
using namespace std;
const int N=1e6;
int p=,ans;
int head[N],back[N];
string s,t;
int main()
{
cin>>s>>t;s='.'+s,t='.'+t;//后移一位
for(int i=;i<s.size();i++)
{
head[i]=head[i-];
if(s[i]==t[p])
head[i]=p++;
}
p=t.size()-;back[s.size()]=t.size();
for(int i=s.size()-;i;i--)
{
back[i]=back[i+];
if(s[i]==t[p])
back[i]=p--;
}
p=;
for(int i=,j=;i<s.size(),j<s.size(),p<t.size();p++)
{
while(head[i]<p && i<s.size())
i++;
while(back[j+]<=p+ && j<s.size())
j++;//找到最优的i和j
if(p==t.size()-)
j=s.size();//贪心地让另一部分为空串
if(i<s.size() && j<=s.size())//合法才更新答案
ans=max(ans,j-i-);
}
printf("%d",ans);
return ;
}
因为指针$i,j$一定是递增的,因此时间复杂度$O(n)$。
------------
既然是初赛原题,那么再来看看CCF的代码:(实测比我的代码快15ms...不过我的代码有的地方常数的确比较大)
#include<iostream>
#include<string>
using namespace std;
const int maxl=1e6;//改了一下数组大小,可以过困难版
string s,t;
int pre[maxl],suf[maxl];//分别相当于head和back数组 int main(){
cin>>s>>t;
int slen=s.length(),tlen=t.length();
for(int i=,j=;i<slen;++i){
if(j<tlen && s[i]==t[j]) ++j;
pre[i]=j;
}
for(int i=slen-,j=tlen-;i>=;--i){
if(j>= && s[i]==t[j]) --j;
suf[i]=j;
}
suf[slen]=tlen-;//递推基本相同,表示略有区别
int ans=;
for(int i=,j=,tmp=;i<=slen;++i){
while(j<=slen && tmp>=suf[j]+) ++j;
ans=max(ans,j-i-);
tmp=pre[i];
}
cout<<ans<<endl;
return ;
}
可以发现思路实际上大体相同,但是计算答案时略有差别。
分析一下这个计算答案的过程,枚举$s$的断点。可以发现,对于当前的循环,$tmp=pre[i-1]$,即$t[0...tmp-1]$是$s[0...i-1]$的字串,那么接下来为了使答案最大,应该找到满足$t[tmp...tlen-1]$是$s[j...slen-1]$的$j$。而这份代码中的while循环找到的$j$应该会比我们要找的$j$大1,因此要删除的部分就是$s[i...j-2]$,长度$j-i-1$。
然后分析一下题目:(理解了题意之后感觉想错都难qwq)
1.
Q:程序输出时,suf数组满足:对于任意$0\leq i\leq slen$,$suf[i]\leq suf[i+1]$。
A:T,显然$suf$数组是递增的。
2.
Q:当$t$是$s$的子序列时,输出一定不为0。
A:F,反例样例3。
3.
Q:程序运行到第23行时,“j-i-1”一定不小于0。
A:F,在本题中的确不会出现这种情况,但初赛题目中可没保证$t$是$s$的子串,$t$不是$s$的字串时就会出现这种情况。
4.
Q:当$t$是$s$的子序列时,$pre$数组和$suf$数组满足:对于任意$0\leq i<slen$,$pre[i]>suf[i+1]+1$。
A:F,反例样例1。
5.
Q:若$tlen=10$,输出为0,则$slen$最小为( )。
A:输出为0说明$t$不是$s$的子序列或者$s=t$,显然前者可以使答案更小,即$t$越短越好。由于cin不能输入空串,因此最短只能是1。
6.
Q:若$tlen=10$,输出为2,则$slen$最小为( )。
A:$s$最多删去两个字符使$t$仍是$s$的字串,显然$t$串最短长度为12。
最后祝大家CSP-J/S 2019rp++。
CF1203D2 Remove the Substring (hard version) 题解的更多相关文章
- D2. Remove the Substring (hard version)(思维 )
D2. Remove the Substring (hard version) time limit per test 2 seconds memory limit per test 256 mega ...
- CF #579 (Div. 3) D1.Remove the Substring (easy version)
D1.Remove the Substring (easy version) time limit per test2 seconds memory limit per test256 megabyt ...
- D2. Remove the Substring (hard version)
D2. Remove the Substring (hard version) 给字符串s,t,保证t为s的子序列,求s删掉最长多长的子串,满足t仍为s的子序列 记录t中每个字母在s中出现的最右的位置 ...
- Codeforces 1196D2 RGB Substring (Hard version) 题解
题面 \(q\) 个询问,每个询问给出一个字符串 \(s\),要你在 \(s\) 中用最小替换得到无穷字符串 RGBRGBRGB... 的长度为定值 \(k\) 的子串. 题解 一眼看过去可能是编辑距 ...
- Codeforces Round #579 (Div. 3) D2. Remove the Substring (hard version) (思维,贪心)
题意:给你一个模式串\(t\),现在要在主串\(s\)中删除多个子串,使得得到的\(s\)的子序列依然包含\(t\),问能删除的最长子串长度. 题解:首先,我们不难想到,我们可以选择\(s\)头部到最 ...
- 双指针(最大删除子串)Codeforces Round #579 (Div. 3)--Remove the Substring (hard version)
题目链接:https://codeforces.com/contest/1203/problem/D2 题意: 给你S串.T串,问你最长删除多长的子串使得S串里仍然有T的子序列. 思路: 想了好久,先 ...
- Codeforces - 1203D2 - Remove the Substring (hard version) - 双指针
https://codeforces.com/contest/1203/problem/D2 上次学了双指针求两个字符串之间的是否t是s的子序列.但其实这个双指针可以求出的是s的前i个位置中匹配t的最 ...
- Remove the Substring
D2. Remove the Substring (hard version) 思路:其实就是贪心吧,先从前往后找,找到 t 可在 s 中存在的最小位置 (pre),再从后往前找,找到 t 可在 s ...
- Codeforces Round #575 (Div. 3) D2. RGB Substring (hard version) 【递推】
一.题目 D2. RGB Substring (hard version) 二.分析 思路一开始就想的对的,但是,用memset给数组初始化为0超时了!超时了! 然后我按照题解改了个vector初始化 ...
随机推荐
- Skill 脚本演示 ycLayerExcel.il
https://www.cnblogs.com/yeungchie/ ycLayerExcel.il 用于 Tape-out 流程,获取当前用到的所有 lpp 等信息,并按照自定格式输出为 Excel ...
- 牛客IOI周赛17-提高组 卷积 生成函数 多项式求逆 数列通项公式
LINK:卷积 思考的时候 非常的片面 导致这道题没有推出来. 虽然想到了设生成函数 G(x)表示最后的答案的普通型生成函数 不过忘了化简 GG. 容易推出 \(G(x)=\frac{F(x)}{1- ...
- python网络爬虫实战PDF高清完整版免费下载|百度云盘|Python基础教程免费电子书
点击获取提取码:vg1y python网络爬虫实战帮助读者学习Python并开发出符合自己要求的网络爬虫.网络爬虫,又被称为网页蜘蛛,网络机器人,是一种按照一定的规则,自动地抓取互联网信息的程序或者脚 ...
- [转] 总结了N个真实线上故障
以下文章来源于架构师进阶之路 ,作者二马读书 1. JVM频繁FULL GC快速排查 在分享此案例前,先聊聊哪些场景会导致频繁Full GC: 内存泄漏(代码有问题,对象引用没及时释放,导致对象不能及 ...
- LeetCode(2)---路径总和
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 sum = ...
- property补充
property补充 # class Foo: # @property # def AAA(self): # print('get的时候运行我啊') # # @AAA.setter # def AAA ...
- 网络安全传输系统-sprint3账号管理子系统设计
part1:sqlite嵌入式数据库移植 1.数据库系统构成:访问数据库应用-->管理数据库系统-->数据库存储(自上而下) 2.数据库中数据以表的形式而存在.表与表之间可能存在关联关系( ...
- 【av68676164(p41-p42)】内存管理功能
存储器的功能需求 容量足够大 速度足够快 信息永久保存 多道程序并行 多道程序并行带来的问题 共享:代码和数据共享,节省内存 保护:不允许内存中的程序相互间非法访问 实际存储器体系 三级存储体系 Ca ...
- 2020-07-23:开启rdb后,redis的启动流程是怎样的?
福哥答案2020-07-23: Redis 在完成初始化全局服务器配置,加载配置文件,初始化服务器,开始加载持久化的数据到内存中.如果启用了 appendonly 了,则Redis从 appendfi ...
- C#LeetCode刷题之#434-字符串中的单词数(Number of Segments in a String)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3941 访问. 统计字符串中的单词个数,这里的单词指的是连续的不是 ...