Pytorch Autograd (自动求导机制)
Pytorch Autograd (自动求导机制)
Introduce
Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心。
本文通过logistic回归模型来介绍Pytorch的自动求导机制。首先,本文介绍了tensor与求导相关的属性。其次,通过logistic回归模型来帮助理解BP算法中的前向传播以及反向传播中的导数计算。
以下均为初学者笔记。
Tensor Attributes Related to Derivation
note: 以下用x代表创建的tensor张量。
- x.requires_grad:True or False,用来指明该张量在反向传播过程中是否需要求导。
- with torch.no_grad()::当我们在做模型评估的时候是不需要求导的,可以嵌套一层with torch.no_grad()以减少可能的计算和内存开销。
- x.grad:返回损失函数对该张量求偏导的值,在调用backward()之后才有。
- x.grad_fn:存储计算图上某中间节点进行的操作,如加减乘除等,用于指导反向传播时loss对该节点的求偏导计算。
- x.is_leaf:True or False,用于判断某个张量在计算图中是否是叶子张量。叶子张量我个人认为可以理解为目标函数中非中间因变量(中间函数),如神经网络中的权值参数w就是叶子张量。
- x.detach():返回tensor的数据以及requires_grad属性,且返回的tensor与原始tensor共享存储空间,即一个改变会导致另外一个改变。因此,如果我们在backward之前对x.detach()返回的张量进行改变会导致原始x的改变,从而导致求导错误,但是这时系统会报错提醒。
(note:虽然x.data也与x.detach()作用相似,但是x.data不被Autograd系统追踪,因此如果遇到上述问题并不会报错。推荐使用x.detach()) - x.item():如果张量只包含一个元素,可以用x.item()返回,通常loss只包含一个数值,因此常用loss.item()。
- x.tolist():如果张量只包含多个元素,可以用x.tolist()转换成python list返回。
Build Logistic regression Model
假设有一个损失函数如下(Logistic回归):
\]
\]
\]
由损失函数构建简单计算图模型如下:

现在我们通过上述例子来理解前向传播和反向传播。在上述简单的神经网络模型中,我们需要对权值参数w1,w2以及阈值参数b进行更新。神经网络训练的总体过程如下:先由输入层逐级前向传播计算loss输出,再有输出层loss反向计算各层梯度传播误差,以此更新各层的权值参数w和阈值参数b。
在该模型中我们需要求出loss对w1、w2以及b的偏导,以此利用SGD更新各参数。对于根据链式法则的逐级求导过程不再赘述,吴恩达机器学习SGD部分有详细的计算过程以及解释。
现在我们利用pytorch实现logistic回归模型,并手动实现参数更新。
import torch
import numpy as np
# 读入数据 x_t,y_t
x_t = torch.tensor(np.array([[1,1],[1,0],[0,1],[0,0]]),requires_grad=False,dtype=torch.float)
y_t = torch.tensor([[0],[1],[0],[1]],requires_grad=False,dtype=torch.float)
print(x_t.size())
# 定义权值参数w和阈值参数b
w = torch.randn([2,1], requires_grad=True,dtype=torch.float)
b = torch.zeros(1, requires_grad=True,dtype=torch.float)
print(w.size())
# 构建逻辑回归模型
def logistic_model(x_t):
a = torch.matmul(x_t,w) + b
return torch.sigmoid(a)
y_p = logistic_model(x_t)
# 计算误差
def get_loss(y_p, y_t):
return -torch.mean(y_t * torch.log(y_p)+(1-y_t) * torch.log(1-y_p))
loss = get_loss(y_p, y_t)
print(loss)
# 自动求导
loss.backward()
# 查看 w 和 b 的梯度
print(w.grad)
print(b.grad)
# 更新一次参数
w.data = w.data - 1e-2 * w.grad.data
b.data = b.data - 1e-2 * b.grad.data
'''
note:
存在两个问题:
1. 如果没有前面先更新一次参数,后面直接进行迭代更新的话,会报错,具体原因也没搞懂。
2. 利用pycharm运行pytorch代码,调用了backward()之后,程序运行完成进程并不会终止,需要手动到任务管理器中kill进程,具体原因也不清楚。
'''
# epoch
for e in range(10000): # 进行 10000 次更新
y_p = logistic_model(x_t)
loss = get_loss(y_p, y_t)
w.grad.zero_() # 记得归零梯度
b.grad.zero_() # 记得归零梯度
loss.backward()
w.data = w.data - 1e-2 * w.grad.data # 更新 w
b.data = b.data - 1e-2 * b.grad.data # 更新 b
print('epoch: {}, loss: {}'.format(e, loss.data.item()))
print(w)
print(b)
'''
每500次迭代打印出输出结果,我们看到损失函数在迭代中逐步下降:
epoch: 0, loss: 0.9426676034927368
epoch: 500, loss: 0.5936437249183655
epoch: 1000, loss: 0.4318988025188446
epoch: 1500, loss: 0.33194077014923096
epoch: 2000, loss: 0.265964150428772
epoch: 2500, loss: 0.22003984451293945
epoch: 3000, loss: 0.18663322925567627
epoch: 3500, loss: 0.1614413857460022
epoch: 4000, loss: 0.14187511801719666
epoch: 4500, loss: 0.12630191445350647
epoch: 5000, loss: 0.11365044862031937
epoch: 5500, loss: 0.10319262742996216
epoch: 6000, loss: 0.09441888332366943
epoch: 6500, loss: 0.08696318417787552
epoch: 7000, loss: 0.08055643737316132
epoch: 7500, loss: 0.07499672472476959
epoch: 8000, loss: 0.07013023644685745
epoch: 8500, loss: 0.06583743542432785
epoch: 9000, loss: 0.06202460825443268
epoch: 9500, loss: 0.05861698091030121
至此,手动实现梯度下降,logistic模型搭建完成,之后将尝试利用pytorch框架搭建神经网络。
'''
Pytorch Autograd (自动求导机制)的更多相关文章
- pytorch的自动求导机制 - 计算图的建立
一.计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下. import torchfrom torch.autograd import Variable x = Variab ...
- Pytorch学习(一)—— 自动求导机制
现在对 CNN 有了一定的了解,同时在 GitHub 上找了几个 examples 来学习,对网络的搭建有了笼统地认识,但是发现有好多基础 pytorch 的知识需要补习,所以慢慢从官网 API进行学 ...
- PyTorch官方中文文档:自动求导机制
自动求导机制 本说明将概述Autograd如何工作并记录操作.了解这些并不是绝对必要的,但我们建议您熟悉它,因为它将帮助您编写更高效,更简洁的程序,并可帮助您进行调试. 从后向中排除子图 每个变量都有 ...
- Pytorch之Variable求导机制
自动求导机制是pytorch中非常重要的性质,免去了手动计算导数,为构建模型节省了时间.下面介绍自动求导机制的基本用法. #自动求导机制 import torch from torch.autogra ...
- Autograd: 自动求导
Pytorch中神经网络包中最核心的是autograd包,我们先来简单地学习它,然后训练我们第一个神经网络. autograd包为所有在tensor上的运算提供了自动求导的支持,这是一个逐步运行的框架 ...
- Pytorch中的自动求梯度机制和Variable类
自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制. 首先介绍Variable,Variable是对Tensor的一个封装,操作和T ...
- 『PyTorch x TensorFlow』第六弹_从最小二乘法看自动求导
TensoFlow自动求导机制 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归 下面做了三个简单尝试, 利用包含gradients.assign等tf函数直接构建图进行自动 ...
- 什么是pytorch(2Autograd:自动求导)(翻译)
Autograd: 自动求导 pyTorch里神经网络能够训练就是靠autograd包.我们来看下这个包,然后我们使用它来训练我们的第一个神经网络. autograd 包提供了对张量的所有运算自动求导 ...
- Pytorch Tensor, Variable, 自动求导
2018.4.25,Facebook 推出了 PyTorch 0.4.0 版本,在该版本及之后的版本中,torch.autograd.Variable 和 torch.Tensor 同属一类.更确切地 ...
随机推荐
- PE文件格式详解(六)
0x00 前言 前面两篇讲到了输出表的内容以及涉及如何在hexWorkShop中找到输出表及输入DLL,感觉有几个地方还是没有理解好,比如由数据目录表DataDirectory[16]找到输出表表后以 ...
- java语法学习
// 单行注释 /* 多行注释 */ /** JavaDoc(Java文档)注释是这样的.可以用来描述类和类的属性. */ // 导入 java.util中的 ArrayList 类 import j ...
- Report.Net 本地数据库、WebService、Socket报表
本地.服务器的Access.Sql报表编辑.预览.打印. 可自定义预览界面,可方便嵌入到你的程序中去,提供接口函数,如有需要可自行添加接口. 预览采用单双面方式,因为如果页面过多,预览不能全部加载,所 ...
- include文件包含漏洞
发现allow_url_include 是on状态 既然已经直接包含了phpinfo()是文件,首先搜索了一下allow_url_include,发现是处于打开的状态. 既然 allow_url_in ...
- 【XCTF】ics-05
信息: 题目来源:XCTF 4th-CyberEarth 标签:PHP.伪协议 题目描述:其他破坏者会利用工控云管理系统设备维护中心的后门入侵系统 解题过程 题目给了一个工控管理系统,并提示存在后门, ...
- 攻防世界-Web-ics-05
根据题目提示直接进入设备维护中心 点击云平台设备维护中心发现page=index LFI漏洞的黑盒判断方法: 单纯的从URL判断的话,URL中path.dir.file.pag.page.archiv ...
- 百万级别数据Excel导出优化
前提 这篇文章不是标题党,下文会通过一个仿真例子分析如何优化百万级别数据Excel导出. 笔者负责维护的一个数据查询和数据导出服务是一个相对远古的单点应用,在上一次云迁移之后扩展为双节点部署,但是发现 ...
- redis(十九):Redis 架构模式,特点
单机版 特点:简单 问题: 1.内存容量有限 2.处理能力有限 3.无法高可用. 主从复制 Redis 的复制(replication)功能允许用户根据一个 Redis 服务器来创建任意多个该服务器的 ...
- CMDB03 /今日未采集的资产、资产入库、资产变更记录、资产采集
CMDB03 /今日未采集的资产.资产入库.资产变更记录.资产采集 目录 CMDB03 /今日未采集的资产.资产入库.资产变更记录.资产采集 1. 获取今日未采集的服务器 2. server资产入库以 ...
- Android 高德地图 java.lang.UnsatisfiedlinkError Native method not found: com.autonavi.amap.mapcore.MapCore.nativeNewInstance:(Ljava/lang/String;)
在Android项目中引用高德地图,程序运行时出现上述问题,如果引用了Map3D的jar包,则需要在引入Jar文件的同时引入so文件,在高德地图的demo中,找到so文件: 然后将其复制到jniLib ...