1、Introduction

DL解决VO问题:End-to-End VO with RCNN

2、Network structure

a.CNN based Feature Extraction

  论文使用KITTI数据集。

  CNN部分有9个卷积层,除了Conv6,其他的卷积层后都连接1层ReLU,则共有17层。

b、RNN based Sequential Modelling

  RNN is different from CNN in that it maintains memory of its hidden states over time and has feedback loops among them, which enables its current hidden state to be a function of the previous ones.

  Given a convolutional feature xk at time k, a RNN updates at time step k by

  hk and yk are the hidden state and output at time k respectively.

  W terms denote corresponding weight matrices.

  b terms denote bias vectors.

  H is an element-wise nonlinear activation function.

  LSTM

Folded and unfolded LSTMs and internal structure of its unit.

  is element-wise product of two vectors.

  σ is sigmoid non-linearity.

  tanh is hyperbolic tangent non-linearity.

  W terms denote corresponding weight matrices.

  b terms denote bias vectors.

  ik, f k, gk, ck and ok are input gate, forget gate, input modulation gate, memory cell and output gate.

  Each of the LSTM layers has 1000 hidden states.

3、损失函数及优化

  The conditional probability of the poses Yt = (y1, . . . , yt) given a sequence of monocular RGB images Xt = (x1, . . . , xt) up to time t.

  Optimal parameters :

  The hyperparameters of the DNNs:

  (pk, φk) is the ground truth pose.

  (pˆk, φˆk) is the estimated ground truth pose.

  κ (100 in the experiments) is a scale factor to balance the weights of positions and orientations.

  N is the number of samples.

  The orientation φ is represented by Euler angles rather than quaternion since quaternion is subject to an extra unit constraint which hinders the optimisation problem of DL.

DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks的更多相关文章

  1. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

  2. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  3. Convolutional Neural Networks for Visual Recognition

    http://cs231n.github.io/   里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Cont ...

  4. Convolutional Neural Networks for Visual Recognition 1

    Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...

  5. cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记

    1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...

  6. Stanford CS231n - Convolutional Neural Networks for Visual Recognition

    网易云课堂上有汉化的视频:http://study.163.com/course/courseLearn.htm?courseId=1003223001#/learn/video?lessonId=1 ...

  7. CS231n: Convolutional Neural Networks for Visual Recognition

    https://zhuanlan.zhihu.com/p/28522637 https://zhuanlan.zhihu.com/p/21930884 mark

  8. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

  9. Robust Online Visual Tracking with a Single Convolutional Neural Network

    Abstract:这篇论文有三个贡献,第一提出了新颖的简化的结构损失函数,能保持尽量多的训练样本,通过适应模型输出的不确定性来减少跟踪误差累积风险. 第二是增强了普通的SGD,采用了暂时的选择策略来进 ...

随机推荐

  1. day59 pip安装django出错解决方案

    在虚拟环境下,输入 pipinstall django ==2.2,安装django,可能会出现超时问题 ​ 这里的报错是网络问题,解决方案有如下三种 (1)多试几次,网络好就装上了 (2)Cmd输入 ...

  2. shell专题(二):Shell解析器

    (1)Linux提供的Shell解析器有: [atguigu@hadoop101 ~]$ cat /etc/shells /bin/sh /bin/bash /sbin/nologin /bin/da ...

  3. Python函数04/生成器/推导式/内置函数

    Python函数04/生成器/推导式/内置函数 目录 Python函数04/生成器/推导式/内置函数 内容大纲 1.生成器 2.推导式 3.内置函数(一) 4.今日总结 5.今日练习 内容大纲 1.生 ...

  4. js 分享QQ、QQ空间、微信、微博

    //分享QQ好友 function qq(title,url,pic) { var p = { url: 'http://test.qicheyitiao.com',/*获取URL,可加上来自分享到Q ...

  5. Java应用服务器之tomcat基础配置(二)

    前文我们聊了下tomcat的配置文件相关格式和组件简介以及webapp目录结构,manger部署和host managera部署,回顾请参考https://www.cnblogs.com/qiuhom ...

  6. Python 实现图像快速傅里叶变换和离散余弦变换

    图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强.去噪.压缩编码等众多领域.本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的 ...

  7. tineMCE 踩坑:images_upload_handler

    tineMCE 的官方示例提供了前端上传图片方法 images_upload_handler 的写法. 但官方写的有点问题,上传会报错. 不过修改也很简单: images_upload_handler ...

  8. Git的自定义和特殊文件配置

    目录 备注: 知识点 自定义Git 忽略特殊文件 .gitignore忽略文件 忽略文件的原则是: 忽略文件示例 .gitignore文件查看和强制添加 备注: 本文参考于廖雪峰老师的博客Git教程. ...

  9. [jvm] -- 监控和调优常用命令工具篇

    jps:java版本的ps,查看进程的信息 jps -l 输出jar包路径,类全名 jps -m 输出main参数 jps -v 输出JVM参数 jinfo:是用来查看JVM参数和动态修改部分JVM参 ...

  10. 回文树(回文自动机)(PAM)

    第一个能看懂的论文:国家集训队2017论文集 这是我第一个自己理解的自动机(AC自动机不懂KMP硬背,SAM看不懂一堆引理定理硬背) 参考文献:2017国家集训队论文集 回文树及其应用 翁文涛 参考博 ...