1、Introduction

DL解决VO问题:End-to-End VO with RCNN

2、Network structure

a.CNN based Feature Extraction

  论文使用KITTI数据集。

  CNN部分有9个卷积层,除了Conv6,其他的卷积层后都连接1层ReLU,则共有17层。

b、RNN based Sequential Modelling

  RNN is different from CNN in that it maintains memory of its hidden states over time and has feedback loops among them, which enables its current hidden state to be a function of the previous ones.

  Given a convolutional feature xk at time k, a RNN updates at time step k by

  hk and yk are the hidden state and output at time k respectively.

  W terms denote corresponding weight matrices.

  b terms denote bias vectors.

  H is an element-wise nonlinear activation function.

  LSTM

Folded and unfolded LSTMs and internal structure of its unit.

  is element-wise product of two vectors.

  σ is sigmoid non-linearity.

  tanh is hyperbolic tangent non-linearity.

  W terms denote corresponding weight matrices.

  b terms denote bias vectors.

  ik, f k, gk, ck and ok are input gate, forget gate, input modulation gate, memory cell and output gate.

  Each of the LSTM layers has 1000 hidden states.

3、损失函数及优化

  The conditional probability of the poses Yt = (y1, . . . , yt) given a sequence of monocular RGB images Xt = (x1, . . . , xt) up to time t.

  Optimal parameters :

  The hyperparameters of the DNNs:

  (pk, φk) is the ground truth pose.

  (pˆk, φˆk) is the estimated ground truth pose.

  κ (100 in the experiments) is a scale factor to balance the weights of positions and orientations.

  N is the number of samples.

  The orientation φ is represented by Euler angles rather than quaternion since quaternion is subject to an extra unit constraint which hinders the optimisation problem of DL.

DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks的更多相关文章

  1. 论文笔记之:Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper ...

  2. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  3. Convolutional Neural Networks for Visual Recognition

    http://cs231n.github.io/   里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Cont ...

  4. Convolutional Neural Networks for Visual Recognition 1

    Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...

  5. cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记

    1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...

  6. Stanford CS231n - Convolutional Neural Networks for Visual Recognition

    网易云课堂上有汉化的视频:http://study.163.com/course/courseLearn.htm?courseId=1003223001#/learn/video?lessonId=1 ...

  7. CS231n: Convolutional Neural Networks for Visual Recognition

    https://zhuanlan.zhihu.com/p/28522637 https://zhuanlan.zhihu.com/p/21930884 mark

  8. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

  9. Robust Online Visual Tracking with a Single Convolutional Neural Network

    Abstract:这篇论文有三个贡献,第一提出了新颖的简化的结构损失函数,能保持尽量多的训练样本,通过适应模型输出的不确定性来减少跟踪误差累积风险. 第二是增强了普通的SGD,采用了暂时的选择策略来进 ...

随机推荐

  1. day27 作业

    # 学校类 class School: #校区的名字:如"老男孩上海校区" #校区的地址:如"上海虹桥" def __init__(self,s_name,s_ ...

  2. scrapy (三) : 请求传参

    scrapy 请求传参 1.定义数据结构item.py文件 ''' field: item.py ''' # -*- coding: utf-8 -*- # Define here the model ...

  3. Python面向对象02/类的空间问题、类与对象之间的关系、类与类之间的关系

    Python面向对象02/类的空间问题.类与对象之间的关系.类与类之间的关系 目录 Python面向对象02/类的空间问题.类与对象之间的关系.类与类之间的关系 1. 类的空间问题 2. 类与对象之间 ...

  4. vue 实现滑块验证码

    图一为拖拽前效果,图二为拖拽后效果 一.新建文件JcRange.vue,代码如下: 1.模板代码: <template> <div class="jc-component_ ...

  5. bzoj4631踩气球

    bzoj4631踩气球 题意: 有一个序列和一个区间集合,每次将序列中的一个数-1,求此时集合里有多少个区间和为0.序列大小≤100000,区间数≤100000,操作数≤100000. 题解: 此题解 ...

  6. 初级软件工程师怎么走向BATJ?——献给迷茫中的测试人

    软件测试,邀你同行.你好,我是爱码小哥. 又是一个深夜,打开手机备忘录,想记录一些东西,本人比较静的一个人,所以经常会去 IT行业的贴吧论坛交流一下,逛知乎,论坛,社区你就会发现大量这样的帖子,都会出 ...

  7. scrapyd+gerapy的项目部署

    scrapyd+gerapy的项目部署: 简单学习,后续跟进完善 声明: 1)仅作为个人学习,如有冒犯,告知速删! 2)不想误导,如有错误,不吝指教! 环境配置: scrapyd下载: pip ins ...

  8. kubernetes+Azure DevOps实现.Net Core项目的自动化部署&均衡负载

    1. 前言 2. Net Core项目本身的准备 2.1 dockerfile 2.2 创建kubernetes用于helm的chart包 2.2.1 说明 2.2.2 chart文件目录和文件组成 ...

  9. 根据 Promise/A+ 和 ES6 规范,实现 Promise(附详细测试)

    Promise 源码 https://github.com/lfp1024/promise promise-a-plus const PENDING = 'PENDING' const REJECTE ...

  10. 题解 CF510E 【Fox And Dinner】

    可以用网络流解决这个题. 注意到\(a_i \geqslant 2\),所以当相邻数字要和为质数时,这两个数要一个为奇数,一个为偶数. 所以就先将所有数按奇偶分为两列,其就构成了一个二分图,二分图中和 ...