1 简介

k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k近邻法假设给定一个训练数据集,其中的实例类别已定。
分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此,k近邻法不具有显式的学习过程。
k近邻法实际上利用训练数据集对一特征向量空间进行划分,并作为其分类的“模型”。k值的选择、距离度量及分类决策规则是k近邻法的三个基本要素。

2 模型

2.1 简介

k近邻法中,当训练集、距离度量(如欧氏距离)、k值及分类决策规则(如多数表决)确定后,对于任何一个新的输入实例,它所属的类唯一地确定。

这相当于根据上述要素将特征空间划分为一些子空间,确定子空间里的每个点所属的类。

特征空间中,对每个训练实例点,距离该点比其他点更近的所有点组成一个区域,叫作单元(Cell)。

每个训练实例点拥有一个单元,所有训练实例点的单元构成对特征空间的一个划分。
最近邻法将实例的类,作为其单元中所有点的类标记(class label)。这样,每个单元的实例点的类别是确定的。图3.1是二维特征空间划分的一个例子。

2.2 距离度量

欧式距离

曼哈顿距离

各个坐标距离的最大值

2.3 k值选择

在应用中,k值一般取一个比较小的数值。通常采用交叉验证法来选取最优的k值。

2.4 分类决策规则

k近邻法中的分类决策规则往往是多数表决,即由输入实例的k个邻近的训练实例中的多数类决定输入实例的类。

3 算法

输入

输出

特征向量

李航统计学习方法(第二版)(五):k 近邻算法简介的更多相关文章

  1. 李航统计学习方法(第二版)(六):k 近邻算法实现(kd树(kd tree)方法)

    1. kd树简介 构造kd树的方法如下:构造根结点,使根结点对应于k维空间中包含所有实例点的超矩形区域;通过下面的递归方法,不断地对k维空间进行切分,生成子结点.在超矩形区域(结点)上选择一个坐标轴和 ...

  2. 李航统计学习方法(第二版)(十):决策树CART算法

    1 简介 1.1 介绍 1.2 生成步骤 CART树算法由以下两步组成:(1)决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大;(2)决策树剪枝:用验证数据集对己生成的树进行剪枝并选择最优子 ...

  3. 《统计学习方法》笔记三 k近邻法

    本系列笔记内容参考来源为李航<统计学习方法> k近邻是一种基本分类与回归方法,书中只讨论分类情况.输入为实例的特征向量,输出为实例的类别.k值的选择.距离度量及分类决策规则是k近邻法的三个 ...

  4. 统计学习方法(三)——K近邻法

    /*先把标题给写了.这样就能经常提醒自己*/ 1. k近邻算法 k临近算法的过程,即对一个新的样本,找到特征空间中与其最近的k个样本,这k个样本多数属于某个类,就把这个新的样本也归为这个类. 算法  ...

  5. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  6. 李航统计学习方法——算法2k近邻法

    2.4.1 构造kd树 给定一个二维空间数据集,T={(2,3),(5,4),(9,6)(4,7),(8,1),(7,2)} ,构造的kd树见下图 2.4.2 kd树最近邻搜索算法 三.实现算法 下面 ...

  7. 统计学习三:1.k近邻法

    全文引用自<统计学习方法>(李航) K近邻算法(k-nearest neighbor, KNN) 是一种非常简单直观的基本分类和回归方法,于1968年由Cover和Hart提出.在本文中, ...

  8. 统计学习三:2.K近邻法代码实现(以最近邻法为例)

    通过上文可知k近邻算法的基本原理,以及算法的具体流程,kd树的生成和搜索算法原理.本文实现了kd树的生成和搜索算法,通过对算法的具体实现,我们可以对算法原理有进一步的了解.具体代码可以在我的githu ...

  9. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

随机推荐

  1. Redis Desktop Manager无法连接虚拟机中启动的redis服务问题排查步骤

    Redis Desktop Manager下载地址 https://redisdesktop.com/download 安装好以后连接linux服务器上的Redis服务器错误: 问题排查: 1.检查R ...

  2. 记录一次更改服务器名称导致mysql 不能正常登录、启动

    由于客户要求更改服务器的名称,以便区分多台服务器:修改前mysql 能正常登录,但是修改后,登录时报错: Enter password: ERROR 1524 (HY000): Plugin '*C6 ...

  3. view中显示部分区域

    在android中有时候要求只显示view的部分区域,这个时候就需要对当前的view进行剪裁的操作.在android中剪裁当前的view的有两种方法:一种是直接截取view,第二种是通过Outline ...

  4. vue父路由高亮不显示

    vue父路由高亮不显示 首页和考试中心作为父路由,点击时发现不高亮,是因为路由配置有问题 因为首页和考试中心已经重定向到homepage和tpersonal-data这两个路由,当点击首页和考试中心的 ...

  5. SLAM:使用EVO测评ORBSLAM2

    SLAM:使用EVO测评ORBSLAM2 EVO是用来评估SLAM系统测量数据以及输出估计优劣的Python工具,详细说明请参照: https://github.com/MichaelGrupp/ev ...

  6. 【SEED Labs】DNS Rebinding Attack Lab

    Lab Overview 实验环境下载:https://seedsecuritylabs.org/Labs_16.04/Networking/DNS_Rebinding/ 在这个实验中模拟的物联网设备 ...

  7. 客户端软件GUI开发技术漫谈:原生与跨平台解决方案分析

    原生开发应用开发 Microsoft阵营的 Winform WinForm是·Net开发平台中对Windows Form的一种称谓. 如果你想深入的美化UI,需要耗费很大的力气,对于目前主流的CSS样 ...

  8. java android 序列号serializable和parcelable

    why 为什么要了解序列化?—— 进行Android开发的时候,无法将对象的引用传给Activities或者Fragments,我们需要将这些对象放到一个Intent或者Bundle里面,然后再传递. ...

  9. 用Python进行实时计算——PyFlink快速入门

    Flink 1.9.0及更高版本支持Python,也就是PyFlink. 在最新版本的Flink 1.10中,PyFlink支持Python用户定义的函数,使您能够在Table API和SQL中注册和 ...

  10. 从 Tapable 中得到的启发

    Tapable Why Tapable 前端开发中 Webpack 本质上是基于事件流的运行机制,它的工作流程是将特定的任务分发到指定的事件钩子中去完成.而实现这一切的核心就是 tapable,Web ...