ElasticSearch-IK分词器和集成使用
1.查询存在问题分析
在进行字符串查询时,我们发现去搜索"搜索服务器"和"钢索"都可以搜索到数据;
而在进行词条查询时,我们搜索"搜索"却没有搜索到数据;
究其原因是ElasticSearch的标准分词器导致的,当我们创建索引时,字段使用的是标准分词器:
如果使用ES搜索中文内容,默认是不支持中文分词,英文支持
例如:How are you!
How
are
you
!
例如:我是一个好男人!
我
是
一
个
好
男
人
!
{
"mappings": {
"article": {
"properties": {
"id": {
"type": "long",
"store": true,
"index":false
},
"title": {
"type": "text",
"store": true,
"index":true,
"analyzer":"standard" //标准分词器 standard 内置的不支持中文分词
},
"content": {
"type": "text",
"store": true,
"index":true,
"analyzer":"standard" //标准分词器
}
}
}
}
}
例如对 "我是程序员" 进行分词
标准分词器分词效果测试:
GET http://localhost:9200/_analyze
{ "analyzer": "standard", "text": "我是程序员" }
分词结果:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "程",
"start_offset" : 2,
"end_offset" : 3,
"type" : "<IDEOGRAPHIC>",
"position" : 2
},
{
"token" : "序",
"start_offset" : 3,
"end_offset" : 4,
"type" : "<IDEOGRAPHIC>",
"position" : 3
},
{
"token" : "员",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<IDEOGRAPHIC>",
"position" : 4
}
]
}
而我们需要的分词效果是:我、是、程序、程序员
这样的话就需要对中文支持良好的分析器的支持,支持中文分词的分词器有很多,word分词器、庖丁解牛、盘古分词、Ansj分词等,但我们常用的还是下面要介绍的IK分词器。
2.IK分词器简介
IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出 了3个大版本。最初,它是以开源项目Lucene为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IKAnalyzer3.0则发展为 面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。
IK分词器3.0的特性如下:
1)采用了特有的“正向迭代最细粒度切分算法“,具有60万字/秒的高速处理能力。
2)采用了多子处理器分析模式,支持:英文字母(IP地址、Email、URL)、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。
3)对中英联合支持不是很好,在这方面的处理比较麻烦.需再做一次查询,同时是支持个人词条的优化的词典存储,更小的内存占用。
4)支持用户词典扩展定义。
5)针对Lucene全文检索优化的查询分析器IKQueryParser;采用歧义分析算法优化查询关键字的搜索排列组合,能极大的提高Lucene检索的命中率。
3. IK分词器的安装
1)下载地址:https://github.com/medcl/elasticsearch-analysis-ik/releases
课程资料也提供了IK分词器的压缩包:
2)解压,将解压后的elasticsearch文件夹拷贝到elasticsearch-5.6.8\plugins下,并重命名文件夹为analysis-ik
3)重新启动ElasticSearch,即可加载IK分词器
4.IK分词器测试
IK提供了两个分词算法ik_smart 和 ik_max_word
其中 ik_smart 为最少切分,ik_max_word为最细粒度划分
我们分别来试一下
1)最小切分:在浏览器地址栏输入地址
GET http://localhost:9200/_analyze
{ "analyzer": "ik_smart", "text": "我是程序员" }
输出的结果为:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "程序员",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
}
]
}
2)最细切分:在浏览器地址栏输入地址
http://127.0.0.1:9200/_analyze?analyzer=ik_max_word&pretty=true&text=我是程序员
输出的结果为:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "程序员",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "程序",
"start_offset" : 2,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "员",
"start_offset" : 4,
"end_offset" : 5,
"type" : "CN_CHAR",
"position" : 4
}
]
}
6. 修改索引映射mapping
6.1 重建索引
删除原有blog1索引
DELETE localhost:9200/blog1
创建blog1索引,此时分词器使用ik_max_word
PUT localhost:9200/blog1
{
"mappings": {
"article": {
"properties": {
"id": {
"type": "long",
"store": true,
"index":false
},
"title": {
"type": "text",
"store": true,
"index":true,
"analyzer":"ik_max_word"
},
"content": {
"type": "text",
"store": true,
"index":true,
"analyzer":"ik_max_word"
}
}
}
}
}
创建文档
POST localhost:9200/blog1/article/1
{
"id":1,
"title":"ElasticSearch是一个基于Lucene的搜索服务器",
"content":"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。"
}
6.2 再次测试queryString查询
请求url:
POST localhost:9200/blog1/article/_search
请求体:
{
"query": {
"query_string": {
"default_field": "title",
"query": "搜索服务器"
}
}
}
postman截图:
将请求体搜索字符串修改为"钢索",再次查询:
{
"query": {
"query_string": {
"default_field": "title",
"query": "钢索"
}
}
}
postman截图:
6.3 再次测试term测试
请求url:
POST localhost:9200/blog1/article/_search
请求体:
{
"query": {
"term": {
"title": "搜索"
}
}
}
postman截图:
ElasticSearch-IK分词器和集成使用的更多相关文章
- SpringBoot整合Elasticsearch+ik分词器+kibana
话不多说直接开整 首先是版本对应,SpringBoot和ES之间的版本必须要按照官方给的对照表进行安装,最新版本对照表如下: (官网链接:https://docs.spring.io/spring-d ...
- Elasticsearch IK分词器
Elasticsearch-IK分词器 一.简介 因为Elasticsearch中默认的标准分词器(analyze)对中文分词不是很友好,会将中文词语拆分成一个一个中文的汉字,所以引入中文分词器-IK ...
- 七、Elasticsearch+elasticsearch-head的安装+Kibana环境搭建+ik分词器安装
一.安装JDK1.8 二.安装ES 三个节点:master.slave01.slave02 1.这里下载的是elasticsearch-6.3.1.rpm版本包 https://www.elastic ...
- IK 分词器
目录 IK 分词器-介绍 IK 分词器-安装 环境准备:Maven 安装 IK 分词器 IK 分词器-使用 IK 分词器-介绍 现有问题:ES 默认对中文分词并不友好,实际上是把中文进行了每个字的分词 ...
- (2)ElasticSearch在linux环境中集成IK分词器
1.简介 ElasticSearch默认自带的分词器,是标准分词器,对英文分词比较友好,但是对中文,只能把汉字一个个拆分.而elasticsearch-analysis-ik分词器能针对中文词项颗粒度 ...
- ES系列一、CentOS7安装ES 6.3.1、集成IK分词器
Elasticsearch 6.3.1 地址: wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.3. ...
- 【ELK】【docker】【elasticsearch】1. 使用Docker和Elasticsearch+ kibana 5.6.9 搭建全文本搜索引擎应用 集群,安装ik分词器
系列文章:[建议从第二章开始] [ELK][docker][elasticsearch]1. 使用Docker和Elasticsearch+ kibana 5.6.9 搭建全文本搜索引擎应用 集群,安 ...
- Lucene介绍及简单入门案例(集成ik分词器)
介绍 Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和 ...
- Elasticsearch学习系列一(部署和配置IK分词器)
Elasticsearch简介 Elasticsearch是什么? Elaticsearch简称为ES,是一个开源的可扩展的分布式的全文检索引擎,它可以近乎实时的存储.检索数据.本身扩展性很好,可扩展 ...
- Elasticsearch入门之从零开始安装ik分词器
起因 需要在ES中使用聚合进行统计分析,但是聚合字段值为中文,ES的默认分词器对于中文支持非常不友好:会把完整的中文词语拆分为一系列独立的汉字进行聚合,显然这并不是我的初衷.我们来看个实例: POST ...
随机推荐
- Spring Cloud 入门教程(一): Eureka 服务注册
创建一个Maven工程,New-Other-Maven-Maven Probject 点击Next,红色框里的选上 点击Next 点击Finsh就完成了一个Maven Probject的创建. (1) ...
- redis源码学习之lua执行原理
聊聊redis执行lua原理 从一次面试场景说起 "看你简历上写的精通redis" "额,还可以啦" "那你说说redis执行lua脚本的原理&q ...
- Github标星26k+!一个神奇的软件!1分钟即可打造了一个科幻风格的终端
Github掘金计划项目分类汇总(原创不易,若有帮助,欢迎分享/点赞): 编程基础 :精选编程基础如学习路线.编程语言相关的开源项目. 计算机基础:精选计算机基础(操作系统.计算机网络.算法.数据结构 ...
- Python 微信公众号文章爬取
一.思路 我们通过网页版的微信公众平台的图文消息中的超链接获取到我们需要的接口 从接口中我们可以得到对应的微信公众号和对应的所有微信公众号文章. 二.接口分析 获取微信公众号的接口: https:// ...
- EF并发问题,在提供程序连接上启动事务时出错。有关详细信息,请参阅内部异常。
1 Entities data=new Entities(); var list = from p in data.Record where p.CreateTime >= d &&am ...
- Next.js+React聊天室|Next仿微信桌面端|next.js聊天实例
一.项目介绍 next-webchat 基于Next.js+React.js+Redux+Antd+RScroll+RLayer等技术构建的PC桌面端仿微信聊天项目.实现了消息/表情发送.图片/视频预 ...
- U8CO使用C#版(一)
1.懒加载: object obj = null; System.Type oType = System.Type.GetTypeFromProgID("U8Login.clsLogin&q ...
- 登录&单点登录介绍
COOKIE & SESSION & TOKEN 主要用来跟踪会话,识别用户所用.cookie 是客户端,session 是服务端的. 因为 http 是无状态协议,每一次的访问都不知 ...
- env: python3: No such file or directory exit status 127 FER ESPectro Core 编译出错
苹果电脑安装了Arduino,布置ESP8266开发环境,编译程序过程中出现错误: env: python3:No such file or directoryexit status 127为开发板 ...
- python保存二维列表到txt文件,读取txt文件里面的数据转化为二维列表
源码: # 读文件里面的数据转化为二维列表 def Read_list(filename): file1 = open(filename+".txt", "r" ...