题意

给你 \(n\) 个数,每次求出相邻两个数的和组成新数列。经过 \(n-1\) 次操作后,得到一个数。求这个数 \(mod \ m\) 与哪些项无关。

如:当 \(m=2 \ , \ n=2\) 时 \(a_1 \ , \ a_2 , a_3 \Rightarrow a_1+a_2 \ , \ a_2+a_3 \Rightarrow \ a_1+2a_2+a_3\) 则与 \(a_2\) 无关

思路

由二项式定理知道结果系数是杨辉三角的第 \(n-1\) 行,问题转换成判断有多少个 \(C_{n-1}^{i}\) 可以整除 \(m\)。

考虑 \(m\) 与 \(C_{n-1}^{i}\) 的唯一分解,\(\prod_{i=1}^n fac_i^{index_i}\) 与 \(C_{n-1}^{i}\) 作比较,当所有的质因子都在 \(C_{n-1}^{i}\) 中出现并且次数都小于 \(C_{n-1}^{i}\) 的次数时,即可整除。

分解 \(C_{n}^{i}\) 时需要用到组合数的递推式:\(C_{n}^{i}=\frac{n-i+1}{i} \times C_{n}^{i-1}\)。分解时只考虑 \(\frac{n-i+1}{i}\),因为 \(C_{n}^{i-1}\) 在上一次中计算过了。

/************************************************
*Author : lrj124
*Created Time : 2019.08.09.21:03
*Mail : 1584634848@qq.com
*Problem : uva1635
************************************************/
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100000 + 10;
int n,m,m_index[maxn],factor[maxn],cnt,c_index[maxn],ans[maxn];
inline void init() {
for (int i = 2;i*i <= m;i++)
if (!(m%i)) {
factor[++cnt] = i;
for (;!(m%i);m /= i,m_index[cnt]++);
}
if (m > 1) {
factor[++cnt] = m;
m_index[cnt]++;
}
}
inline bool check(int N,int k) {
N = N-k+1;
for (int i = 1;i <= cnt;i++) {
for (;!(N%factor[i]);N /= factor[i],c_index[i]++);
for (;!(k%factor[i]);k /= factor[i],c_index[i]--);
}
for (int i = 1;i <= cnt;i++)
if (m_index[i] > c_index[i]) return false;
return true;
}
int main() {
//freopen("uva1635.in","r",stdin);
//freopen("uva1635.out","w",stdout);
while (cin >> n >> m) {
memset(m_index,0,sizeof(m_index));
memset(c_index,0,sizeof(c_index));
ans[0] = cnt = 0;
init();
for (int i = 1;i <= n-2;i++)
if (check(n-1,i)) ans[++ans[0]] = i+1;
printf("%d\n",ans[0]);
for (int i = 1;i <= ans[0];i++) printf("%s%d",i ^ 1 ? " " : "",ans[i]);
printf("\n");
}
return 0;
}

【UVa1635】Irrelevant Elements - 唯一分解定理的更多相关文章

  1. UVA1635 Irrelevant Elements —— 唯一分解定理 + 二项式定理

    题目链接:https://vjudge.net/problem/UVA-1635 (紫书320) 题解: 1.根据二项式定理, 可得递推公式: C(n,k) = (n-k+1)/k * C(n, k- ...

  2. UVA1635 Irrelevant Elements(唯一分解定理 + 组合数递推)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51196 紫书P320; 题意:给定n个数a1,a2····an,依次求出相邻 ...

  3. POJ2167Irrelevant Elements[唯一分解定理 组合数 杨辉三角]

    Irrelevant Elements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2407   Accepted: 59 ...

  4. UVa1635 - Irrelevant Elements

    通过观察发现其规律符合杨辉三角 需要注意的是最后ai的系数是C(i-1,n-1) 那么,问题就可以变成判断C(0,n-1),C(1,n-1)....C(n-1,n-1)哪些是m的倍数 只需要计算出m的 ...

  5. Irrelevant Elements UVA - 1635 二项式定理+组合数公式+素数筛+唯一分解定理

    /** 题目:Irrelevant Elements UVA - 1635 链接:https://vjudge.net/problem/UVA-1635 题意:給定n,m;題意抽象成(a+b)^(n- ...

  6. 【组合数的唯一分解定理】Uva1635

    给出n.m,求得最终求和数列an=C(n-1,0)*x1 + C(n-1,1)*x2+...+C(n-1,n-1)*xn; 若xi与m无关,则an除以m的余数与xi无关,即余数不含xi的项: 输入:n ...

  7. Irrelevant Elements UVA-1635 (二项式定理)

    vjudge链接 原题链接 乍一看似乎没什么思路,但是写几个简单的例子之后规律就变得很明显. 比如当 n=5 时,每一步计算后的结果如下: a1 a1+a2 a1+2a2+a3 a1+3a2+3a3+ ...

  8. poj2773 —— 二分 + 容斥原理 + 唯一分解定理

    题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  9. B - Common Divisors (codeforces)数论算法基本定理,唯一分解定理模板

    You are given an array aa consisting of nn integers. Your task is to say the number of such positive ...

随机推荐

  1. Java Web(1)-JavaScript

    一.JavaScript 和 html 代码的结合方式 1. 第一种方式 只需要在 head 标签中,或者在 body 标签中, 使用 script 标签 来书写 JavaScript 代码 < ...

  2. 玩LOL间歇性卡顿(FPS突然降低又马上恢复)?Windows10间歇性卡顿?

    一..问题描述: LOL时:画面突然死掉,不能操作:FPS突然降低,从三位数降到两位数(150 -> 6).我最开始就是从LOL这里观测到的,因为游戏是卡顿最直观.最明显的表现.之后才发现不玩游 ...

  3. xctf-pwn hello_pwn

    走流程,看看文件类型 64位,开了NX 直接丢IDA分析 查看sub_400686() 是个给flag的函数,可以看到,只要满足if语句的条件使dword_60106C == 1853186401就可 ...

  4. 一个文本框的andriod教程

    https://blog.csdn.net/androidmsky/article/details/49870823

  5. python的__get__方法看这一篇就足够了

    get类型函数 直接上代码: class TestMain: def __init__(self): print('TestMain:__init__') self.a = 1 if __name__ ...

  6. C# File.Exists 判断系统文件,警惕32位和64位的差异

    今天在调试一个Winform程序,使用File.Exists 判断一个已经存在的驱动文件,程序一直返回false.因为驱动文件属于系统目录,心想难道是权限不够导致的?然后用管理员身份运行软件,依然返回 ...

  7. socket网络(二)

    作用域 python/js语言中,无块级作用域 if 1 == 1: name = 'alex' print(name) python中以函数为作用域 def func(): name = 'alex ...

  8. redis实操-sentinel

    本文主要记录一些操作步骤,作为自己学习的一个记录,也供虚拟机上学习redis的人参考. 实操篇,可以参考 http://redis.cn/ 主从复制实操 在test目录下新建配置进行练习 1.mkdi ...

  9. SpringBoot2 整合 Swagger2文档 使用BootstrapUI页面

    SpringBoot2 整合 Swagger2 SpringBoot整合三板斧 第一步.引入pom <dependency> <groupId>com.spring4all&l ...

  10. git push到远程仓库

    (此处我以码云为例) 常用命令: 添加远程仓库:git remote add origin 仓库地址 (origin只是一个名字,对远程仓库的一个名字,习惯上用origin) 从仓库拉取内容:git ...