总览

    A cancellable asynchronous computation.
This class provides a base implementation of {@link Future}, with methods to start and cancel a computation, query to see if the computation is complete, and retrieve the result of the computation.
The result can only be retrieved when the computation has completed; the {@code get} methods will block if the computation has not yet completed.
Once the computation has completed, the computation cannot be restarted or cancelled (unless the computation is invoked using {@link #runAndReset}).

FututeTask 是可取消的异步任务。这个类提供了 Future 的基本实现,通过这些实现的方法能够开始或取消任务、查询任务是否完成、获取任务结果。仅当任务完成时才能获取任务的结果;当任务未完成时, get() 会阻塞。一旦任务完成,任务不能被重启或取消(除非任务由 runAndReset() 来启动)。

//@param <V> 是 get() 返回结果的类型
public class FutureTask<V> implements RunnableFuture<V>

和JDK7以前的版本的不同之处

/*
* Revision notes: This differs from previous versions of this
* class that relied on AbstractQueuedSynchronizer, mainly to
* avoid surprising users about retaining interrupt status during
* cancellation races.
* Sync control in the current design relies
* on a "state" field updated via CAS to track completion, along
* with a simple Treiber stack to hold waiting threads.
*/

和之前依赖AQS的版本不同的主要原因是,之前的版本在并发的情况下取消任务,可能会导致任务处于 interrupt 的状态。

当前设计的同步控制依赖于通过CAS更新的 state 成员变量以及一个容纳等待线程的 Treiber stack 来追踪任务的完成情况。

成员变量

/**
* The run state of this task, initially NEW. The run state
* transitions to a terminal state only in methods set,
* setException, and cancel. During comp letion, state may take on
* transient values of COMPLETING (while outcome is being set) or
* INTERRUPTING (only while interrupting the runner to satisfy a
* cancel(true)). Transitions from these intermediate to final
* states use cheaper ordered/lazy writes because values are unique
* and cannot be further modified.
* 此任务的运行状态,初始值是NEW。
* 运行状态转换只可能在set(), setException()和cancel()方法中发生。
* 任务正在完成时,状态可能处于 COMPLETING(正在设置outcome成员变量) 或 INTERRUPTING(当通过
* cancel(ture)中断运行线程时) 这2个中间状态(瞬时值)。
*
* 可能发生的状态转换:
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6; /** The underlying callable; nulled out after run */
//运行后将变为null
private Callable<V> callable;
/** The result to return or exception to throw from get() */
//get()返回的结果或抛出的异常
//非volatile,受state的读或写保护
private Object outcome; // non-volatile, protected by state reads/writes
/** The thread running the callable; CASed during run() */
//运行当前callable的线程
private volatile Thread runner;
/** Treiber stack of waiting threads */
//容纳等待线程的栈
private volatile WaitNode waiters;

构造函数

 /**
* Creates a {@code FutureTask} that will, upon running, execute the
* given {@code Callable}.
* 创建一个在运行时会执行指定callable的FutureTask
*
* @param callable the callable task
* @throws NullPointerException if the callable is null
*/
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW; // ensure visibility of callable
} /**
* Creates a {@code FutureTask} that will, upon running, execute the
* given {@code Runnable}, and arrange that {@code get} will return the
* given result on successful completion.
* 创建一个在运行时执行指定Runnable的,能够令get()在成功完成时返回结果的FutureTask
*
* @param runnable the runnable task
* @param result the result to return on successful completion. If
* you don't need a particular result, consider using
* constructions of the form:
* {@code Future<?> f = new FutureTask<Void>(runnable, null)}
* @throws NullPointerException if the runnable is null
*/
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW; // ensure visibility of callable
}

成员方法



public boolean isCancelled() {
return state >= CANCELLED;
} public boolean isDone() {
return state != NEW;
} /**
* Returns result or throws exception for completed task.
* 为完成的任务返回结果或抛出异常
*
* @param s completed state value
*/
@SuppressWarnings("unchecked")
private V report(int s) throws ExecutionException {
Object x = outcome;
if (s == NORMAL)
return (V)x;
if (s >= CANCELLED)
throw new CancellationException();
throw new ExecutionException((Throwable)x);
} public boolean cancel(boolean mayInterruptIfRunning) {
//只有在NEW状态的任务才可以被取消
if (!(state == NEW && STATE.compareAndSet
(this, NEW, mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
try { // in case call to interrupt throws exception
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
//设置中断
t.interrupt();
} finally { // final state
//设置为最终状态:被中断
STATE.setRelease(this, INTERRUPTED);
}
}
} finally {
finishCompletion();
}
return true;
} /**
* @throws CancellationException {@inheritDoc}
*/
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
} /**
* @throws CancellationException {@inheritDoc}
*/
public V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
//若任务未完成,等待任务完成
if (s <= COMPLETING &&
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
} /**
* Protected method invoked when this task transitions to state
* {@code isDone} (whether normally or via cancellation). The
* default implementation does nothing. Subclasses may override
* this method to invoke completion callbacks or perform
* bookkeeping. Note that you can query status inside the
* implementation of this method to determine whether this task
* has been cancelled.
*
* 受保护方法。
* 子类可以重写这个方法来进行任务回调或者记录状态。
* 你可以通过在方法的实现中查询任务的状态来判断任务是否被取消。
*/
protected void done() { } /**
* Sets the result of this future to the given value unless
* this future has already been set or has been cancelled.
* 将任务的结果设置为给定值,除非这个任务以及被设置或被取消。
*
* <p>This method is invoked internally by the {@link #run} method
* upon successful completion of the computation.
*
* @param v the value
*/
protected void set(V v) {
if (STATE.compareAndSet(this, NEW, COMPLETING)) {
outcome = v;
//设置最终状态:正常完成
STATE.setRelease(this, NORMAL); // final state
finishCompletion();
}
} /**
* Causes this future to report an {@link ExecutionException}
* with the given throwable as its cause, unless this future has
* already been set or has been cancelled.
* 导致任务将报告一个以值得throwable为原因的 ExecutionException,
* 除非任务已经被设置结果或被取消。
*
* <p>This method is invoked internally by the {@link #run} method
* upon failure of the computation.
* 这个是一个内部使用的方法,只在任务失败时由run()调用。
*
* @param t the cause of failure
*/
protected void setException(Throwable t) {
if (STATE.compareAndSet(this, NEW, COMPLETING)) {
outcome = t;
STATE.setRelease(this, EXCEPTIONAL); // final state
finishCompletion();
}
} public void run() {
//以下2种情况直接返回:
//1.状态不为NEW
//2.CAS设置当前线程为任务运行线程失败
if (state != NEW ||
!RUNNER.compareAndSet(this, null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
//这个方法会调用finishCompletion()改变任务状态
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
// 防止cacel(true)的线程挂起导致中断不完全,
// 从而处于Interrupting的中间状态。
// 保证 interrupting 这出现在run和runAndSet方法中
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
} /**
* Executes the computation without setting its result, and then
* resets this future to initial state, failing to do so if the
* computation encounters an exception or is cancelled. This is
* designed for use with tasks that intrinsically execute more
* than once.
* 在不设置结果的前提下运行任务,然后将future设置成初始状态?
* 当任务遇到异常或被取消,将会运行失败。
*
* 此方法设计目的:服务那些本就需要执行多次的任务。
* 在ScheduleThreadPoolExecutor中用到,因为里面的任务都是定时或周期执行的,需要被执行多次。
*
* @return {@code true} if successfully run and reset
*/
protected boolean runAndReset() {
//仅仅指出和run()的不同之处
if (state != NEW ||
!RUNNER.compareAndSet(this, null, Thread.currentThread()))
return false;
boolean ran = false;
int s = state;
try {
Callable<V> c = callable;
if (c != null && s == NEW) {
try {
c.call(); // don't set result 这里没有接收结果
ran = true;
} catch (Throwable ex) {
setException(ex);
}
//这里没有调用set(),因此不会调用finishCompletion()改变任务状态
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
return ran && s == NEW;
} /**
* Ensures that any interrupt from a possible cancel(true) is only
* delivered to a task while in run or runAndReset.
* 保证 interrupting 这出现在run和runAndSet方法中。
*/
private void handlePossibleCancellationInterrupt(int s) {
// It is possible for our interrupter to stall before getting a
// chance to interrupt us. Let's spin-wait patiently.
// 若任务处于INTERRUPTING状态,自旋等待任务被完全中断,
// 即等待转换到INTERRUPTED状态
if (s == INTERRUPTING)
while (state == INTERRUPTING)
Thread.yield(); // wait out pending interrupt // assert state == INTERRUPTED;
// 到这里 state必然等于INTERRUPTED // We want to clear any interrupt we may have received from
// cancel(true). However, it is permissible to use interrupts
// as an independent mechanism for a task to communicate with
// its caller, and there is no way to clear only the
// cancellation interrupt.
//
// Thread.interrupted();
} /**
* Simple linked list nodes to record waiting threads in a Treiber
* stack. See other classes such as Phaser and SynchronousQueue
* for more detailed explanation.
* 普通节点,作为栈节点记录栈中的等待线程
*/
static final class WaitNode {
volatile Thread thread;
volatile WaitNode next;
WaitNode() { thread = Thread.currentThread(); }
} /**
* Removes and signals all waiting threads, invokes done(), and
* nulls out callable.
* 移除和通知所有等待的线程,调用done(),并移除callable。
*/
private void finishCompletion() {
// assert state > COMPLETING;
// 此时 state > COMPLETING; //若等待线程栈非空
for (WaitNode q; (q = waiters) != null;) {
//CAS设置等待线程为null
if (WAITERS.weakCompareAndSet(this, q, null)) {
//迭代栈,唤醒所有非空线程
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
//唤醒
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
} done(); callable = null; // to reduce footprint
} /**
* Awaits completion or aborts on interrupt or timeout.
* 等待任务完成或在中断和超时的情况下放弃任务
*
* @param timed true if use timed waits
* 当需要超时等待的功能时为真
* @param nanos time to wait, if timed
* @return state upon completion or at timeout
* 返回任务完成或任务超时的状态
*/
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
// The code below is very delicate, to achieve these goals:
// - call nanoTime exactly once for each call to park
// - if nanos <= 0L, return promptly without allocation or nanoTime
// - if nanos == Long.MIN_VALUE, don't underflow
// - if nanos == Long.MAX_VALUE, and nanoTime is non-monotonic
// and we suffer a spurious wakeup, we will do no worse than
// to park-spin for a while
long startTime = 0L; // Special value 0L means not yet parked
WaitNode q = null;
//记录当前线程是否入栈排队
boolean queued = false;
for (;;) {
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING)
// We may have already promised (via isDone) that we are done
// so never return empty-handed or throw InterruptedException
Thread.yield();
else if (Thread.interrupted()) {
//若当前线程被中断,移出栈,抛出异常
removeWaiter(q);
throw new InterruptedException();
}
else if (q == null) {
if (timed && nanos <= 0L)
return s;
//创建栈节点
q = new WaitNode();
}
else if (!queued)
//节点CAS尝试入栈,若成功则此节点成为waiters
queued = WAITERS.weakCompareAndSet(this, q.next = waiters, q);
else if (timed) {
//若需要超时等待的功能
final long parkNanos;
if (startTime == 0L) { // first time
//首次判断,记录开始时间
startTime = System.nanoTime();
if (startTime == 0L)
startTime = 1L;
parkNanos = nanos;
} else {
long elapsed = System.nanoTime() - startTime;
if (elapsed >= nanos) {
//若超时则返回
removeWaiter(q);
return state;
}
//计算剩余等待时间
parkNanos = nanos - elapsed;
}
// nanoTime may be slow; recheck before parking
if (state < COMPLETING)
//快速判断任务是否正在完成
LockSupport.parkNanos(this, parkNanos);
}
else
//若不需要超时等待的功能,直接阻塞
LockSupport.park(this);
}
} /**
* Tries to unlink a timed-out or interrupted wait node to avoid
* accumulating garbage. Internal nodes are simply unspliced
* without CAS since it is harmless if they are traversed anyway
* by releasers. To avoid effects of unsplicing from already
* removed nodes, the list is retraversed in case of an apparent
* race. This is slow when there are a lot of nodes, but we don't
* expect lists to be long enough to outweigh higher-overhead
* schemes.
* 尝试移除超时或被中断的节点。
* 在明显竞争时将会重新遍历列表,目的是为了避免移除一个已经移除的节点。
*/
private void removeWaiter(WaitNode node) {
if (node != null) {
//令当前节点的线程为null
node.thread = null;
retry:
for (;;) { // restart on removeWaiter race
for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
s = q.next;
if (q.thread != null)
pred = q;
else if (pred != null) {
//若当前线程为空,但存在前继非空节点,则移除当前节点
pred.next = s;
//若前继节点无效,则重新遍历
if (pred.thread == null) // check for race
continue retry;
}
else if (!WAITERS.compareAndSet(this, q, s))
//移除栈顶节点失败
continue retry;
}
break;
}
}
} /**
* Returns a string representation of this FutureTask.
*
* @implSpec
* The default implementation returns a string identifying this
* FutureTask, as well as its completion state. The state, in
* brackets, contains one of the strings {@code "Completed Normally"},
* {@code "Completed Exceptionally"}, {@code "Cancelled"}, or {@code
* "Not completed"}.
*
* @return a string representation of this FutureTask
*/
public String toString() {
final String status;
switch (state) {
case NORMAL:
status = "[Completed normally]";
break;
case EXCEPTIONAL:
status = "[Completed exceptionally: " + outcome + "]";
break;
case CANCELLED:
case INTERRUPTING:
case INTERRUPTED:
status = "[Cancelled]";
break;
default:
final Callable<?> callable = this.callable;
status = (callable == null)
? "[Not completed]"
: "[Not completed, task = " + callable + "]";
}
return super.toString() + status;
} // VarHandle mechanics
private static final VarHandle STATE;
private static final VarHandle RUNNER;
private static final VarHandle WAITERS;
static {
try {
MethodHandles.Lookup l = MethodHandles.lookup();
STATE = l.findVarHandle(FutureTask.class, "state", int.class);
RUNNER = l.findVarHandle(FutureTask.class, "runner", Thread.class);
WAITERS = l.findVarHandle(FutureTask.class, "waiters", WaitNode.class);
} catch (ReflectiveOperationException e) {
throw new ExceptionInInitializerError(e);
} // Reduce the risk of rare disastrous classloading in first call to
// LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
Class<?> ensureLoaded = LockSupport.class;
}

FutureTask源码分析(JDK7)的更多相关文章

  1. FutureTask 源码分析

    FutureTask 源码分析,这个类的原理与我分析android当中的FutureTask类差不多[http://www.cnblogs.com/daxin/p/3802392.html] publ ...

  2. Java并发编程笔记之FutureTask源码分析

    FutureTask可用于异步获取执行结果或取消执行任务的场景.通过传入Runnable或者Callable的任务给FutureTask,直接调用其run方法或者放入线程池执行,之后可以在外部通过Fu ...

  3. 并发编程—— FutureTask 源码分析

    1. 前言 当我们在 Java 中使用异步编程的时候,大部分时候,我们都会使用 Future,并且使用线程池的 submit 方法提交一个 Callable 对象.然后调用 Future 的 get ...

  4. TreeSet与TreeMap的源码分析 JDK7

    TreeSet存储原则是:不可重复,有序的. public TreeSet() { this(new TreeMap<E,Object>()); } public TreeSet(Comp ...

  5. FutureTask源码分析

    1. 常量和变量 private volatile int state; // 任务状态 private static final int NEW = 0; private static final ...

  6. JUC源码分析-线程池篇(二)FutureTask

    JUC源码分析-线程池篇(二)FutureTask JDK5 之后提供了 Callable 和 Future 接口,通过它们就可以在任务执行完毕之后得到任务的执行结果.本文从源代码角度分析下具体的实现 ...

  7. Java 多线程(五)—— 线程池基础 之 FutureTask源码解析

    FutureTask是一个支持取消行为的异步任务执行器.该类实现了Future接口的方法. 如: 取消任务执行 查询任务是否执行完成 获取任务执行结果(”get“任务必须得执行完成才能获取结果,否则会 ...

  8. HashMap实现原理及源码分析之JDK7

    攻克集合第一关!! 转载 http://www.cnblogs.com/chengxiao/ 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如m ...

  9. Java异步编程——深入源码分析FutureTask

    Java的异步编程是一项非常常用的多线程技术. 之前通过源码详细分析了ThreadPoolExecutor<你真的懂ThreadPoolExecutor线程池技术吗?看了源码你会有全新的认识&g ...

随机推荐

  1. Windows10 ping通 虚拟机上的Linux-CentOS7操作系统

    我是按照Oracle VM VirtualBox 安装CentOS7操作系统这个博客安装Linux操作系统的. 我们这里只关心网卡的配置,网卡一: 网卡二: 我按照上面那个博客安装Linux操作系统之 ...

  2. Codeforces Round #628 (Div. 2) B. CopyCopyCopyCopyCopy(Set)

    题意: 给你一个数组,可以像题目那样无限拼接,问递增子序列的最大长度(可不连续). 思路: 序列的最大长度即为数组中不同元素的个数. Tips: 一开始不知道back-to-back什么意思,看到题目 ...

  3. 【poj 1962】Corporative Network(图论--带权并查集 模版题)

    P.S.我不想看英文原题的,但是看网上题解的题意看得我 炒鸡辛苦&一脸懵 +_+,打这模版题的代码也纠结至极了......不得已只能自己翻译了QwQ . 题意:有一个公司有N个企业,分成几个网 ...

  4. 病毒侵袭 HDU - 2896 板子题

    当太阳的光辉逐渐被月亮遮蔽,世界失去了光明,大地迎来最黑暗的时刻....在这样的时刻,人们却异常兴奋--我们能在有生之年看到500年一遇的世界奇观,那是多么幸福的事儿啊~~ 但网路上总有那么些网站,开 ...

  5. python爬虫笔记Day01

    python爬虫笔记第一天 Requests库的安装 先在cmd中pip install requests 再打开Python IDM写入import requests 完成requests在.py文 ...

  6. Docker配置文件deamon.json详解

    vim /etc/docker/daemon.json { "authorization-plugins": [], "data-root": "&q ...

  7. Win7下安装IIS

    安装IIS 1.控制面板 --> 程序 --> 卸载程序,进入"程序与功能". 2.进入"打开或关闭Window功能". 3.找到"Int ...

  8. Linux下的C语言编程

    一.在Linux下的C语言编程所需工具(下面所列举的都是我编程所用的工具) 1.文本编辑器 Vim 2.编译链接工具 gcc 3.调试器 gdb 4.项目管理工具 make和makefile 二.VI ...

  9. React Hooks: useRef All In One

    React Hooks: useRef All In One useRef https://reactjs.org/docs/hooks-reference.html#useref refs xgqf ...

  10. 微软收购 GitHub

    微软收购 GitHub 微软收购 GitHub震惊业界:引发开发者信任问题 https://news.cnblogs.com/n/598432/ GitLab refs xgqfrms 2012-20 ...