洛谷 P2220 [HAOI2012]容易题 数论
洛谷 P2220 [HAOI2012]容易题
题目描述
为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!
输入格式
第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。
输出格式
一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。
输入输出样例
输入 #1
3 4 5
1 1
1 1
2 2
2 3
4 3
输出 #1
90
说明/提示
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18
30%的数据n<=4,m<=10,k<=10
另有20%的数据k=0
70%的数据n<=1000,m<=1000,k<=1000
100%的数据 n<=10\(^9\),m<=10\(^9\),k<=10\(^5\),1<=y<=n,1<=x<=m
分析
我们先去考虑没有限制的情况,那么最终的答案就是
\(( 1+2+3+……+n)^{m}=(\frac{n\times(n-1)}{2})^{m}\)
为什么是这样呢?其实我们可以把数列的每一个元素看成一个集合
每一次我们可以从每个集合中任意取出\(n\)个元素
这\(n\)个元素的值分别为\(1 - n\)
根据乘法原理最终的结果就是
\((1+2+3+……+n)\times(1+2+3+……+n)\times……\)
一共要乘\(m\)次
如果还不理解的话,你可以随便举一个例子,按照上面的式子把它展开
但是,题目中有些元素是取不到的
我们可以记录一下每一个元素取不到的值的和\(tot\)
我们只要把该元素贡献的价值改为\(\frac{n\times(n-1)}{2}-tot\)就可以了
因为题目中的限制条件最多只有\(10^{5}\)个
所以我们记录下有限制条件的元素的个数\(cnt\),对其单独处理
对于其余的元素,我们用快速幂的思想求出\((\frac{n\times(n-1)}{2})^{m-cnt}\)
最后再把所有的结果累乘就可以了
要注意两个问题:
1、因为结果很大,能取模的地方就取模
2、要注意判重,样例已经给出重复的情况了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=100005;
const long long mod=1e9+7;
typedef long long ll;
map<pair<ll,ll>,ll> ma1;
map<ll,ll> ma2;
ll jl[maxn];
ll cf(ll now,ll zs){
ll jl=now%mod,ans=1;
while(zs){
if(zs&1) ans*=(jl%mod),ans%=mod;
jl*=(jl%mod),jl%=mod;
zs>>=1;
}
return ans;
}
int main(){
ll n,m,k,js=0;
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=1;i<=k;i++){
ll aa,bb;
scanf("%lld%lld",&aa,&bb);
if(!ma2[aa]) jl[++js]=aa;
if(ma1[make_pair(aa,bb)]) continue;
ma1[make_pair(aa,bb)]=1;
ma2[aa]+=bb;
}
ll ans=1,cj=(n+1)*n/2;
for(ll i=1;i<=js;i++){
ans*=(cj-ma2[jl[i]])%mod;
ans%=mod;
}
printf("%lld\n",ans%mod*cf(cj,m-js)%mod%mod);
return 0;
}
洛谷 P2220 [HAOI2012]容易题 数论的更多相关文章
- 洛谷 P2791 幼儿园篮球题
洛谷 P2791 幼儿园篮球题 https://www.luogu.org/problemnew/show/P2791 我喜欢唱♂跳♂rap♂篮球 要求的是:\(\sum_{i=0}^kC_m^iC_ ...
- 在洛谷3369 Treap模板题 中发现的Splay详解
本题的Splay写法(无指针Splay超详细) 前言 首先来讲...终于调出来了55555...调了整整3天..... 看到大部分大佬都是用指针来实现的Splay.小的只是按照Splay的核心思想和原 ...
- 洛谷 P4145 上帝造题的七分钟2 / 花神游历各国
洛谷 这题就是区间开根号,区间求和.我们可以分块做. 我们记布尔数组vis[i]表示第i块中元素是否全部为1. 因为显然当一个块中元素全部为1时,并不需要对它进行根号操作. 我们每个块暴力开根号,因为 ...
- 洛谷 P1372 又是毕业季I[数论/神坑规律题]
题目描述 为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排.可是如何挑呢?老师列出全班同学的号数1,2,……,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~) ...
- 洛谷P2429 制杖题 [2017年6月计划 数论10]
P2429 制杖题 题目描述 求不大于 m 的. 质因数集与给定质数集有交集的自然数之和. 输入输出格式 输入格式: 第一行二个整数 n,m. 第二行 n 个整数,表示质数集内的元素 p[i]. 输出 ...
- 洛谷P4204 [NOI2006]神奇口袋 数论
正解:数论 解题报告: 传送门 第一次用\(\LaTeX\)和\(markdown\),,,如果出了什么锅麻烦在评论跟我港句QAQ \(1)x_{i}\)可以直接离散 \(2)y_{i}\)的顺序对结 ...
- 洛谷P4358密钥破解 [CQOI2016] 数论
正解:数论 解题报告: 先,放个传送门QwQ 这题难点可能在理解题意,,, 所以我先放个题意QAQ 大概就是说,给定一个整数N,可以被拆成两个质数的成绩p*q,然后给出了一个数e,求d满足e*d=1( ...
- 洛谷P3166 数三角形 [CQOI2014] 数论
正解:数论 解题报告: 传送门! 很久以前做的题了呢,,,回想方法还想了半天QAQ 然后写这题题解主要是因为看到了好像有很新颖的法子,就想着,学习一下趴,那学都学了不写博客多可惜 首先港下最常规的方法 ...
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
随机推荐
- 痞子衡嵌入式:降低刷新率是定位LCD花屏显示问题的第一大法(i.MXRT1170, 1280x480 LVDS)
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是i.MXRT1170上LCD花屏显示问题的分析解决经验. 痞子衡最近这段时间在参与一个基于i.MXRT1170的大项目(先保个密),需要 ...
- class 类前向声明
/* 使用前向引用声明虽然可以解决一些问题,但它并不是万能的.需要注意的是, 尽管使用了前向引用声明,但是在提供一个完整的类声明之前,不能声明该类的对象, 也不能在内联成员函数中使用该类的 ...
- HTML 5的革新——语义化标签section和article的区别
原文地址:https://stackoverflow.com/questions/33910294/what-is-the-difference-between-article-and-section ...
- Python大神编程常用4大工具,你用过几个?
摘要:Python是一种跨平台的编程语言,能够在所有主要的操作系统上,运行你编写的任何Python程序.今天介绍几款常见的工具:Python自带的解释器.文本编辑器(Geany.Sublime Tex ...
- git新手入门问题总结
git新手入门问题总结 前言 本人为2019年6月份刚刚毕业,大三暑假中旬来到上海,实习时间大致为十个月,在这十个月里面学到了许多关于git使用方面的知识 经常会逛开源中国水水动态,看看技术帖子学习知 ...
- Windows下C,C++开发环境搭建指南
Windows下C,C++开发环境搭建指南 前情提要 基于近一段时间很多网友发邮件反馈,说一些项目编译出现问题,诸如此类的情况. 就觉得很有必要写一篇C,C++开发环境的小指南,统一回复. 1.君欲善 ...
- [TopCoder]Seatfriends
题目 点这里看题目. 分析 可以想到用 DP 解决. 由于把空位放到状态里面太麻烦了,因此我们单独将 " 组 " 提出来进行 DP . \(f(i,j)\):前\( ...
- 深入理解React:懒加载(lazy)实现原理
目录 代码分割 React的懒加载 import() 原理 React.lazy 原理 Suspense 原理 参考 1.代码分割 (1)为什么要进行代码分割? 现在前端项目基本都采用打包技术,比如 ...
- python中的bytes和str类型
经过一上午的查找资料.大概理清楚了bytes类型和str类型的区别. bytes类型和str类型在呈现形式有相同之处,如果你print一个bytes类型的变量,会打印一个用b开头,用单引号括起来的序列 ...
- MySQL数据库几种常用的索引类型使用介绍
一.简介 MySQL目前主要有以下几种索引类型: 1.普通索引 2.唯一索引 3.主键索引 4.组合索引 5.全文索引 二.语句 1 2 CREATE TABLE table_name[col_nam ...