OpenCV ——双线性插值(Bilinear interpolation)
1,原理
在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度,运用比较广泛。
越是简单的模型越适合用来举例子,我们就举个简单的图像:3*3 的256级灰度图。假如图像的象素矩阵如下图所示(这个原始图把它叫做源图,Source):
234 38 22
67 44 12
89 65 63
这 个矩阵中,元素坐标(x,y)是这样确定的,x从左到右,从0开始,y从上到下,也是从零开始,这是图象处理中最常用的坐标系。
如果想把这副图放大为 4*4大小的图像,那么该怎么做呢?那么第一步肯定想到的是先把4*4的矩阵先画出来再说,好了矩阵画出来了,如下所示,当然,矩阵的每个像素都是未知数,等待着我们去填充(这个将要被填充的图的叫做目标图,Destination):
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
然后要往这个空的矩阵里面填值了,要填的值从哪里来来呢?是从源图中来,好,先填写目标图最左上角的象素,坐标为(0,0),那么该坐标对应源图中的坐标可以由如下公式得出srcX=dstX* (srcWidth/dstWidth) , srcY = dstY * (srcHeight/dstHeight)
好了,套用公式,就可以找到对应的原图的坐标了(0*(3/4),0*(3/4))=>(0*0.75,0*0.75)=>(0,0),找到了源图的对应坐标,就可以把源图中坐标为(0,0)处的234象素值填进去目标图的(0,0)这个位置了。
接下来,如法炮制,寻找目标图中坐标为(1,0)的象素对应源图中的坐标,套用公式:
(1*0.75,0*0.75)=>(0.75,0) 结果发现,得到的坐标里面竟然有小数,这可怎么办?计算机里的图像可是数字图像,象素就是最小单位了,象素的坐标都是整数,从来没有小数坐标。这时候采用的一种策略就是采用四舍五入的方法(也可以采用直接舍掉小数位的方法),把非整数坐标转换成整数,好,那么按照四舍五入的方法就得到坐标(1,0),完整的运算过程就是这样的:(1*0.75,0*0.75)=>(0.75,0)=>(1,0) 那么就可以再填一个象素到目标矩阵中了,同样是把源图中坐标为(1,0)处的像素值38填入目标图中的坐标。
依次填完每个象素,一幅放大后的图像就诞生了,像素矩阵如下所示:
234 38 22 22
67 44 12 12
89 65 63 63
89 65 63 63
这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真,比如,当由目标图的坐标反推得到的源图的的坐标是一个浮点数的时候,采用了四舍五入的方法,直接采用了和这个浮点数最接近的象素的值,这种方法是很不科学的,当推得坐标值为 0.75的时候,不应该就简单的取为1,既然是0.75,比1要小0.25 ,比0要大0.75 ,那么目标象素值其实应该根据这个源图中虚拟的点四周的四个真实的点来按照一定的规律计算出来的,这样才能达到更好的缩放效果。
双线型内插值算法就是一种比较好的图像缩放算法,它充分的利用了源图中虚拟点四周的四个真实存在的像素值来共同决定目标图中的一个像素值,因此缩放效果比简单的最邻近插值要好很多。
双线性内插值算法描述如下:
对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v) (其中i、j均为浮点坐标的整数部分,u、v为浮点坐标的小数部分,是取值[0,1)区间的浮点数),则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)
其中f(i,j)表示源图像(i,j)处的的像素值,以此类推。
比如,象刚才的例子,现在假如目标图的象素坐标为(1,1),那么反推得到的对应于源图的坐标是(0.75 , 0.75), 这其实只是一个概念上的虚拟象素,实际在源图中并不存在这样一个象素,那么目标图的象素(1,1)的取值不能够由这个虚拟象素来决定,而只能由源图的这四个象素共同决定:(0,0)(0,1)(1,0)(1,1),而由于(0.75,0.75)离(1,1)要更近一些,那么(1,1)所起的决定作用更大一些,这从公式1中的系数uv=0.75×0.75就可以体现出来,而(0.75,0.75)离(0,0)最远,所以(0,0)所起的决定作用就要小一些,公式中系数为(1-u)(1-v)=0.25×0.25也体现出了这一特点。
2,计算方法
首先,在X方向上进行两次线性插值计算,然后在Y方向上进行一次插值计算。
在图像处理的时候,我们先根据
srcX=dstX* (srcWidth/dstWidth) ,
srcY = dstY * (srcHeight/dstHeight)
来计算目标像素在源图像中的位置,这里计算的srcX和srcY一般都是浮点数,比如f(1.2, 3.4)这个像素点是虚拟存在的,先找到与它临近的四个实际存在的像素点
(1,3) (2,3)
(1,4) (2,4)
写成f(i+u,j+v)的形式,则u=0.2,v=0.4, i=1, j=3
在沿着X方向差插值时,f(R1)=u(f(Q21)-f(Q11))+f(Q11)
沿着Y方向同理计算。
或者,直接整理一步计算,f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1) 。
3,加速以及优化策略
单纯按照上文实现的插值算法只能勉强完成插值的功能,速度和效果都不会理想,在具体代码实现的时候有些小技巧。参考OpenCV源码以及网上博客整理如下两点:
- 源图像和目标图像几何中心的对齐。
- 将浮点运算转换成整数运算
3.1 源图像和目标图像几何中心的对齐
方法:在计算源图像的虚拟浮点坐标的时候,一般情况:
srcX=dstX* (srcWidth/dstWidth) ,
srcY = dstY * (srcHeight/dstHeight)
中心对齐(OpenCV也是如此):
SrcX=(dstX+0.5)* (srcWidth/dstWidth) -0.5
SrcY=(dstY+0.5) * (srcHeight/dstHeight)-0.5
原理:
双线性插值算法及需要注意事项这篇博客解释说“如果选择右上角为原点(0,0),那么最右边和最下边的像素实际上并没有参与计算,而且目标图像的每个像素点计算出的灰度值也相对于源图像偏左偏上。”我有点保持疑问。
将公式变形,srcX=dstX* (srcWidth/dstWidth)+0.5*(srcWidth/dstWidth-1)
相当于我们在原始的浮点坐标上加上了0.5*(srcWidth/dstWidth-1)这样一个控制因子,这项的符号可正可负,与srcWidth/dstWidth的比值也就是当前插值是扩大还是缩小图像有关,有什么作用呢?看一个例子:假设源图像是3*3,中心点坐标(1,1)目标图像是9*9,中心点坐标(4,4),我们在进行插值映射的时候,尽可能希望均匀的用到源图像的像素信息,最直观的就是(4,4)映射到(1,1)现在直接计算srcX=4*3/9=1.3333!=1,也就是我们在插值的时候所利用的像素集中在图像的右下方,而不是均匀分布整个图像。现在考虑中心点对齐,srcX=(4+0.5)*3/9-0.5=1,刚好满足我们的要求。
3.2 将浮点运算转换成整数运算
参考图像处理界双线性插值算法的优化
直接进行计算的话,由于计算的srcX和srcY 都是浮点数,后续会进行大量的乘法,而图像数据量又大,速度不会理想,解决思路是:浮点运算→→整数运算→→”<<左右移按位运算”。
放大的主要对象是u,v这些浮点数,OpenCV选择的放大倍数是2048“如何取这个合适的放大倍数呢,要从三个方面考虑,第一:精度问题,如果这个数取得过小,那么经过计算后可能会导致结果出现较大的误差。第二,这个数不能太大,太大会导致计算过程超过长整形所能表达的范围。第三:速度考虑。假如放大倍数取为12,那么算式在最后的结果中应该需要除以12*12=144,但是如果取为16,则最后的除数为16*16=256,这个数字好,我们可以用右移来实现,而右移要比普通的整除快多了。”我们利用左移11位操作就可以达到放大目的。
4,代码
uchar* dataDst = matDst1.data;
int stepDst = matDst1.step;
uchar* dataSrc = matSrc.data;
int stepSrc = matSrc.step;
int iWidthSrc = matSrc.cols;
int iHiehgtSrc = matSrc.rows; for (int j = ; j < matDst1.rows; ++j)
{
float fy = (float)((j + 0.5) * scale_y - 0.5);
int sy = cvFloor(fy);
fy -= sy;
sy = std::min(sy, iHiehgtSrc - );
sy = std::max(, sy); short cbufy[];
cbufy[] = cv::saturate_cast<short>((.f - fy) * );
cbufy[] = - cbufy[]; for (int i = ; i < matDst1.cols; ++i)
{
float fx = (float)((i + 0.5) * scale_x - 0.5);
int sx = cvFloor(fx);
fx -= sx; if (sx < ) {
fx = , sx = ;
}
if (sx >= iWidthSrc - ) {
fx = , sx = iWidthSrc - ;
} short cbufx[];
cbufx[] = cv::saturate_cast<short>((.f - fx) * );
cbufx[] = - cbufx[]; for (int k = ; k < matSrc.channels(); ++k)
{
*(dataDst+ j*stepDst + *i + k) = (*(dataSrc + sy*stepSrc + *sx + k) * cbufx[] * cbufy[] +
*(dataSrc + (sy+)*stepSrc + *sx + k) * cbufx[] * cbufy[] +
*(dataSrc + sy*stepSrc + *(sx+) + k) * cbufx[] * cbufy[] +
*(dataSrc + (sy+)*stepSrc + *(sx+) + k) * cbufx[] * cbufy[]) >> ;
}
}
}
cv::imwrite("linear_1.jpg", matDst1); cv::resize(matSrc, matDst2, matDst1.size(), , , );
cv::imwrite("linear_2.jpg", matDst2);
OpenCV ——双线性插值(Bilinear interpolation)的更多相关文章
- 三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法
线性插值 先讲一下线性插值:已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值(反过来也是一样,略): y−y0x−x0=y1−y0x1−x ...
- [转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法
[转载]三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法 来源:https://blog.csdn.net/xbinworld/article/details/656 ...
- 数字图像处理实验(4):PROJECT 02-04 [Multiple Uses],Zooming and Shrinking Images by Bilinear Interpolation 标签: 图像处理MATLAB
实验要求: Zooming and Shrinking Images by Bilinear Interpolation Objective To manipulate another techniq ...
- 【转载】 OpenCV ——双线性插值(Bilinear interpolation)
原文地址: https://www.cnblogs.com/yssongest/p/5303151.html --------------------------------------------- ...
- 【Bilinear interpolation】双线性插值详解(转)
最近在做视频拼接的项目,里面用到了图像的单应性矩阵变换,在最后的图像重映射,由于目标图像的坐标是非整数的,所以需要用到插值的方法,用的就是双线性插值,下面的博文主要是查看了前辈的博客对双 ...
- [转]双线性插值(Bilinear interpolation)
1,原理 在图像的仿射变换中,很多地方需要用到插值运算,常见的插值运算包括最邻近插值,双线性插值,双三次插值,兰索思插值等方法,OpenCV提供了很多方法,其中,双线性插值由于折中的插值效果和运算速度 ...
- Bilinear Filter
参考资料: 1. 维基百科Biliner Filtering 2. 维基百科Texture Filtering 3.维基百科Bilinear Interpolation 4. 维基百科Bilinear ...
- 图像处理之基础---图像缩放中的双线性插值c实现
在进入频域变换之前, 我们还是轻松一下,再搞点平面上的变化来看看.这把选了一个双线性插值(Bilinear interpolation)来实现是源于看到了csdn上别人的问题, 权且实现一个函数,方便 ...
- 深度学习方法(十二):卷积神经网络结构变化——Spatial Transformer Networks
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 今天具体介绍一个Google ...
随机推荐
- linux(centos7)下SVN服务器如何搭建
linux(centos)下SVN服务器如何搭建?说到SVN服务器,想必大家都知道,可以是在LINUX下如何搭建SVN服务器呢?那么今天给大家分享一下linux(centos)搭建SVN服务器的思路! ...
- python ast
import ast print ast.literal_eval('[1, 2, 3]')print eval("2 + 3 * len('hello')") == 17prin ...
- B/S、C/S区别
[B/S.C/S C/S (Client/Server客户端服务器) B/S (Brower/Server浏览器服务器) 区别 1.硬件环境不同: C/S 一般建立在专用的网络上, 小范围里的网络环 ...
- 安装eclipse要和JDK的位数相对应
即JDK是32位时,eclipse也要装32位的
- PHP使用正则表达式验证电话号码(手机和固定电话)
这个还不错,很有用. tel='验证的电话号码'; $isMob="/^1[3-8]{1}[0-9]{9}$/"; $isTel="/^([0-9]{3,4}-)?[0 ...
- iOS开发设置关于tabBar和navigationBar以及item中的一些全局属性
/* To set item label text attributes use the appearance selectors available on the superclass, UIBar ...
- 实时计算storm流程架构总结
hadoop一般用在离线的分析计算中,而storm区别于hadoop,用在实时的流式计算中,被广泛用来进行实时日志处理.实时统计.实时风控等场景,当然也可以用在对数据进行实时初步的加工,存储到分布式数 ...
- 邮件发送 java
package com.sun.mail; import java.io.File;import java.io.IOException;import java.io.UnsupportedEncod ...
- 屏幕坐标和世界坐标的转换+对象池技术(3D打地鼠小游戏)
游戏中可能经常会遇到需要某个物体跟着鼠标移动,然后又需要把物体放在某个鼠标指定的位置 实现方式 Camera.main.WorldToScreenPoint Camera.main.ScreenToW ...
- HDU 1253 胜利大逃亡(BFS)
题目链接 Problem Description Ignatius被魔王抓走了,有一天魔王出差去了,这可是Ignatius逃亡的好机会.魔王住在一个城堡里,城堡是一个A*B*C的立方体,可以被表示成A ...