Strongly connected(hdu4635(强连通分量))
/*
http://acm.hdu.edu.cn/showproblem.php?pid=4635
Strongly connected
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 477 Accepted Submission(s): 212
Problem Description
Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.
Input
The first line of date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
Output
For each case, you should output the maximum number of the edges you can add.
If the original graph is strongly connected, just output -1.
Sample Input
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
Sample Output
Case 1: -1
Case 2: 1
Case 3: 15
Source
2013 Multi-University Training Contest 4
Recommend
zhuyuanchen520
解析:
题意:
解析:给出一个有向图,问最多可以加多少边使得任意两点无论正反方向皆可到达
思路:最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边,假设X部有x个点,Y部有y个点,有x+y=n,同时边数F=x*y+x*(x-1)+y*(y-1),整理得:F=N*N-N-x*y,当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大,所以首先对于给定的有向图缩点,对于缩点后的每个点,如果它的出度或者入度为0,那么它才有可能成为X部或者Y部,所以只要求缩点之后的出度或者入度为0的点中,包含节点数最少的那个点,令它为一个部,其它所有点加起来做另一个部,就可以得到最多边数的图了
故:1要用tarjan算法进行缩点
2.缩点后重建图
3.找出出度或入度为0且结点最小点,套用公式
46MS 5436K 2350 B C++
*/
#pragma comment(linker, "/STACK:1024000000,1024000000")/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<stack>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn=100000+10;
int pre[maxn],scc[maxn],low[maxn],st[maxn];
int nodenum[maxn],head1[maxn],head2[maxn],vis[maxn];
int dfsn,sccn,top,ans,t1,t2,m,n;
struct Edge
{
int s;
int t;
int next;
}edge[maxn];
struct Node
{
int fn;//出度
int tn;//入度
int num;//缩点后每个“结点”含有的节点数
}node[maxn];
int min(int a,int b)
{
return a<b? a:b;
}
void init()
{
memset(pre,0,sizeof(pre));
memset(scc,0,sizeof(scc));
memset(low,0,sizeof(low));
memset(st,0,sizeof(st));
memset(vis,0,sizeof(vis));
memset(head1,-1,sizeof(head1));
memset(head2,-1,sizeof(head2));
dfsn=sccn=top=ans=t1=t2=0;
}
void add1(int s,int t)
{
edge[t1].s=s;
edge[t1].t=t;
edge[t1].next=head1[s];
head1[s]=t1++;
}
void add2(int s,int t)
{
edge[t2].s=s;
edge[t2].t=t;
edge[t2].next=head2[s];
head2[s]=t2++;
}
void dfs(int u)//缩点
{
pre[u]=low[u]=++dfsn;
st[top++]=u;
vis[u]=1;//标记已访问的点
for(int i=head1[u];i!=-1;i=edge[i].next)
{
int v=edge[i].t;
if(!pre[v])
{
dfs(v);
low[u]=min(low[u],low[v]);
}
else if(!scc[v])
low[u]=min(low[u],pre[v]);
}
if(low[u]==pre[u])
{
int k=0;
sccn++;
for(;;)
{
int x=st[--top];
scc[x]=sccn;
k++;
if(x==u)
break;
}
node[sccn].num=k;//记录缩点后的信息
node[sccn].fn=0;
node[sccn].tn=0;
}
}
void work()
{
for(int i=1;i<=n;i++)//这样做的目的是保证每个结点都可以访问到
{
if(!vis[i])
dfs(i); }
//printf("sccn==%d\n",sccn);
if(sccn==1)//如果当且仅当只有用一个强连通分量时,不需要加边
{
ans=-1;
return;
} for(int i=0;i<t1;i++)//缩点后重建图。并记录每个结点的出度和入度数
{
int u=scc[edge[i].s];
int v=scc[edge[i].t];
add2(u,v);
if(u!=v)
{
node[u].tn++;
node[v].fn++;
}
}
int Min=100000000,sum=0;
for(int i=1;i<=sccn;i++)
{
if(node[i].fn==0||node[i].tn==0)//取出度或入读为0的点
{if(Min>node[i].num)
Min=node[i].num;
}
sum+=node[i].num;
}
ans=sum*sum-sum-Min*(sum-Min)-m;
}
int main()
{
int T,i,j,u,v;
int c=0;
scanf("%d",&T);
while(T--)
{ init();
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add1(u,v);
}
work();
printf("Case %d: %d\n",++c,ans);
}
return 0;
}
Strongly connected(hdu4635(强连通分量))的更多相关文章
- [HDOJ4635]Strongly connected(强连通分量,缩点)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给一张图,问最多往这张图上加多少条边,使这张图仍然无法成为一个强连通图. 起初是先分析样例 ...
- HDU 4635 Strongly connected(强连通分量,变形)
题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...
- HDU 4635 Strongly connected ——(强连通分量)
好久没写tarjan了,写起来有点手生,还好1A了- -. 题意:给定一个有向图,问最多添加多少条边,让它依然不是强连通图. 分析:不妨考虑最大时候的临界状态(即再添加一条边就是强连通图的状态),假设 ...
- HDU 4635 Strongly connected(强连通分量缩点+数学思想)
题意:给出一个图,如果这个图一开始就不是强连通图,求出最多加多少条边使这个图还能保持非强连通图的性质. 思路:不难想到缩点转化为完全图,然后找把它变成非强连通图需要去掉多少条边,但是应该怎么处理呢…… ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4635:Strongly connected(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给出n个点和m条边,问最多能添加几条边使得图不是一个强连通图.如果一开始强连通就-1.思路:把图分成 ...
- HDU4635 Strongly connected【强连通】
题意: 给一个n个点的简单有向图,问最多能加多少条边使得该图仍然是简单有向图,且不是强连通图.简单有向图的定义为:没有重边,无自环. 强连通图的定义为:整个图缩点后就只有一个点,里面包含n个原点,也就 ...
- hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...
- POJ1236(KB9-A 强连通分量)
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19326 Accepted: 75 ...
随机推荐
- 有趣html5(两)----使用canvas结合剧本画在画布上的简单图(html5另一个强大)
请珍惜劳动小编成果,这篇文章是原来小编,转载请注明出处. 于html5中能够使用canvas标签在画布上绘图,先直接上代码,这篇文章先简介一下canvas的用法.简单画几个圆,矩形,三角形,写字. 在 ...
- myeclipse解决JSP文件script调整背景颜色
1进口MyEclipse主题后,打开jsp要么html文件,jsvascript部分原因遭遇了一层白色的.闪避这个时候.症状,如下面: watermark/2/text/aHR0cDovL2Jsb2c ...
- Android设计模式(五岁以下儿童)--简单工厂模式
1.面试的时候问这个问题: 在ListView 的item小程序.很多不同的显示风格.或者是,为了更好地维护,不同的样式,应该怎么做? 我一下就想到的是工厂的模式,利用project,编写ViewFa ...
- cocos2d-x 3.1.1 学习笔记[4]GridActions 网格动画
文章写的 http://blog.csdn.net/zhouyunxuan 老样子.见代码. //GridActions can only used on NodeGrid auto nodeGri ...
- cocos2d-x3.x 设计与实现弹出对话框
要定义一个类PopupLayer 代码PopupLayer.h #ifndef __crossDT_PopupLayer__ #define __crossDT_PopupLayer__ #inclu ...
- 从头开始学JavaScript (十一)——Object类型
原文:从头开始学JavaScript (十一)--Object类型 一.object类型 一个object就是一系列属性的集合,一个属性包含一个名字(属性名)和一个值(属性值). object对于在应 ...
- Asp.Net超时问题汇总
在数据库或者请求操作时,如果选择的时间段过短或操作数据量过大,就会遇到"请求超时"的的问题,网络上提供很多解决方案,但普遍不完善,根据个人经验及参考网络解决方案,先将其汇总如下: ...
- 使用 Eclipse 的 SVN 主要插件创建项目/支/标签
原文 阅读 Mark Phippard 该博客以及<Subversion 与版本号控制>之后,我了解到 分支/标签 是 SVN 非常棒的特性之中的一个.但我在使用推荐的 "tru ...
- ASP.NET MVC学习之控制器篇扩展性
原文:ASP.NET MVC学习之控制器篇扩展性 一.前言 在之前的一篇随笔中已经讲述过控制器,而今天的随笔是作为之前的扩展. 二.正文 1.自定义动作方法 相信大家在开发过程一定会遇到动作方法的重名 ...
- string.format大全
字符串的数字格式 stringstr1 =string.Format("{0:N1}",56789); //result: 56,789.0 strin ...