[Hadoop in Action] 第1章 Hadoop简介
- 编写可扩展、分布式的数据密集型程序和基础知识
- 理解Hadoop和MapReduce
- 编写和运行一个基本的MapReduce程序
- 方便——Hadoop运行在由一般商用机器构成的大型集群上,或者云计算服务之上;
- 健壮——Hadoop致力于在一般商用硬件上运行,其架构假设硬件会频繁地出现失效;
- 可扩展——Hadoop通过增加集群节点,可以线性地扩展以处理更大的数据集;
- 简单——Hadoop运行用户快速编写出高效的并行代码。
- 用向外扩展代替向上扩展——扩展商用关系型数据库的代价会更加昂贵的
- 用键/值对代替关系表——Hadoop使用键/值对作为基本数据单元,可足够灵活地处理较少结构化的数据类型
- 用函数式编程(MapReduce)代替声明式查询(SQL)——在MapReduce中,实际的数据处理步骤是由你指定的,很类似于SQL引擎的一个执行计划
- 用离线处理代替在线处理——Hadoop是专为离线处理和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式
- 存储文件到许多计算机上(第一阶段)
- 编写一个基于磁盘的散列表,使得处理不受内存容量限制
- 划分来自第一阶段的中间数据(即wordcount)
- 洗牌这些分区到第二阶段中合适的计算机上
- 应用的输入必须组织为一个键/值对的列表list(<k1,v1>);
- 含有键/值对的列表被拆分,进而通过调用mapper的map函数对每个单独的键/值对<k1,v1>进行处理;
- 所有mapper的输出被聚合到一个包含<k2,v2>对的巨大列表中;
- 每个reducer分别处理每个被聚合起来的<k2,list(v2)>,并输出<k3,v3>。
- Linux操作系统
- JDK1.6以上运行环境
- Hadoop操作环境
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); //(1)使用空格进行分词
while (itr.hasMoreTokens()) {
word.set(itr.nextToken()); //(2)把Token放入Text对象中
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result); //(3)输出每个Token的统计结果
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
[Hadoop in Action] 第1章 Hadoop简介的更多相关文章
- [hadoop in Action] 第3章 Hadoop组件
管理HDFS中的文件 分析MapReduce框架中的组件 读写输入输出数据 1.HDFS文件操作 [命令行方式] Hadoop的文件命令采取的形式为: hadoop fs -cmd < ...
- [Hadoop in Action] 第7章 细则手册
向任务传递定制参数 获取任务待定的信息 生成多个输出 与关系数据库交互 让输出做全局排序 1.向任务传递作业定制的参数 在编写Mapper和Reducer时,通常会想让一些地方可以配 ...
- [Hadoop in Action] 第6章 编程实践
Hadoop程序开发的独门绝技 在本地,伪分布和全分布模式下调试程序 程序输出的完整性检查和回归测试 日志和监控 性能调优 1.开发MapReduce程序 [本地模式] 本地模式 ...
- [Hadoop in Action] 第5章 高阶MapReduce
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter 1.链接MapReduce作业 [顺序链接MapReduce作业] mapreduce-1 | mapr ...
- [Hadoop in Action] 第4章 编写MapReduce基础程序
基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...
- Hadoop专业解决方案-第13章 Hadoop的发展趋势
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第13章 Hadoop的发展趋势小组已经翻译完成,在此对 ...
- [hadoop读书笔记] 第四章 Hadoop I/O操作
P92 压缩 P102 序列化 序列化:将结构化对象转为字节流便于在网上传输或写到磁盘进行永久性存储的过程 用于进程之间的通信或者数据的永久存储 反序列化:将字节流转为结构化对象的逆过程 Hadoop ...
- [Hadoop in Action] 第2章 初识Hadoop
Hadoop的结构组成 安装Hadoop及其3种工作模式:单机.伪分布和全分布 用于监控Hadoop安装的Web工具 1.Hadoop的构造模块 (1)NameNode(名字节点) ...
- Hadoop专业解决方案-第12章 为Hadoop应用构建企业级的安全解决方案
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,春节期间,项目进度有所延迟,不过元宵节以后大家已经步入正轨, 目前第12章 为Hadoop应用构 ...
随机推荐
- 日期格式 CST
从es 取出来一个date 字段, 结果竟然是 2016-10-10T10:48:58.000Z 这样的字符串, 这个是什么格式啊??? CST ? 只能自己转换了! 通过"yyyy-MM- ...
- Oracle---------sql 中取值两列中值最大的一列
1.表中有A B C三列,用SQL语句实现:当A列大于B列时选择A列否则选择B列,当B列大于C列时选择B列否则选择C列. select (case when a>b then a else b ...
- CentOS 搭建openVPN
1.安装前准备 # 关闭selinux setenforce 0 sed -i '/^SELINUX=/c\SELINUX=disabled' /etc/selinux/config # 安装open ...
- AFNetworking 3.0 源码解读(四)之 AFURLResponseSerialization
本篇是AFNetworking 3.0 源码解读的第四篇了. AFNetworking 3.0 源码解读(一)之 AFNetworkReachabilityManager AFNetworking 3 ...
- jvm系列(四):jvm调优-命令大全(jps jstat jmap jhat jstack jinfo)
文章同步发布于github博客地址,阅读效果更佳,欢迎品尝 运用jvm自带的命令可以方便的在生产监控和打印堆栈的日志信息帮忙我们来定位问题!虽然jvm调优成熟的工具已经有很多:jconsole.大名鼎 ...
- 响应式图片菜单式轮播,兼容手机,平板,PC
昨天在给自己用bootstrap写一个响应式主业模版时想用一个图片轮播js,看到了bootstrap里面的unslider.js,只有1.7k,很小,很兴奋,但使用到最后发现不兼容手机,当分辨率变化的 ...
- External Configuration Store Pattern 外部配置存储模式
Move configuration information out of the application deployment package to a centralized location. ...
- 一个简单的webservice的demo(下)winform异步调用webservice
绕了一大圈,又开始接触winform的项目来了,虽然很小吧.写一个winform的异步调用webservice的demo,还是简单的. 一个简单的Webservice的demo,简单模拟服务 一个简单 ...
- xcode7.1新建项目等问题
一.LaunchImage不显示 解决办法: 1.在Assets.xcassets新建LaunchImage并加入不同屏幕的launchImage 2.点击项目名,点击TARGETS,选择Genera ...
- react-native学习笔记--首次安装apk到小米5报错
本文直接引用大神文档: [WINDOWS环境 React Native初识]com.android.ddmlib.InstallException: Failed to establish sessi ...