链接:http://poj.org/problem?id=2417

题意:

思路:求离散对数,Baby Step Giant Step算法基本应用。

下面转载自:AekdyCoin

【普通Baby Step Giant Step】



【问题模型】

求解

A^x = B (mod C) 中 0 <= x < C 的解,C 为素数



【思路】

我们能够做一个等价

x = i * m + j  ( 0 <= i < m, 0 <=j < m) m = Ceil ( sqrt( C) )

而这么分解的目的无非是为了转化为:

(A^i)^m * A^j = B ( mod C)



之后做少许暴力的工作就能够解决这个问题:

(1) for i = 0 -> m, 插入Hash (i, A^i mod C)

(2) 枚举 i ,对于每个枚举到的i,令  AA = (A^m)^i mod C

我们有

AA * A^j = B (mod C)

显然AA,B,C均已知,而因为C为素数,那么(AA,C)无条件为1

于是对于这个模方程解的个数唯一(能够利用扩展欧几里得或 欧拉定理来求解)

那么对于得到的唯一解X,在Hash表中寻找,假设找到,则返回 i * m + j 

注意:因为i从小到大的枚举,而Hash表中存在的j必定是对于某个剩余系内的元素X 是最小的(就是指标)

所以显然此时就能够得到最小解



假设须要得到 x > 0的解,那么仅仅须要在上面的步骤中推断 当 i * m + j > 0 的时候才返回

(转载结束)

本题仅仅是最基础的应用,复杂度是

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <cstdlib>
#include <queue>
#include <stack>
#include <vector>
#include <ctype.h>
#include <algorithm>
#include <string>
#include <set>
#define PI acos(-1.0)
#define maxn 10005
#define INF 0x7fffffff
#define eps 1e-8
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
LL pow_mod(LL aa,LL ii,LL nn)
{
if(ii==0)
return 1%nn;
LL temp=pow_mod(aa,ii>>1,nn);
temp=temp*temp%nn;
if(ii&1)
temp=temp*aa%nn;
return temp;
}
struct b_step
{
int i,m;
} bb[100005];
bool cmp(b_step a,b_step b)
{
return a.m==b.m?a.i<b.i:a.m<b.m;
}
int BiSearch(int m,LL num)
{
int low=0,high=m,mid;
while(low<=high)
{
mid=(low+high)>>1;
if(bb[mid].m==num)
return bb[mid].i;
if(bb[mid].m<num)
low=mid+1;
else
high=mid-1;
}
return -1;
}
void giant_step_baby_step(LL b,LL n,LL p)
{
int m=(int)ceil(sqrt((double)p));
bb[0].i=0,bb[0].m=1;
for(int i=1; i<m; i++)
{
bb[i].i=i;
bb[i].m=bb[i-1].m*b%p;
}
sort(bb,bb+m,cmp);
int top=0;
for(int i=1; i<m; i++)
if(bb[i].m!=bb[top].m)
bb[++top]=bb[i];
LL bm=pow_mod(pow_mod(b,p-2,p),m,p);
LL ans=-1;
LL tmp=n;
for(int i=0; i<m; i++)
{
int pos=BiSearch(top,tmp);
if(~pos)
{
ans=m*i+pos;
break;
}
tmp=((LL)tmp*bm)%p;
}
if(!~ans)
puts("no solution");
else
printf("%d\n",ans);
}
int main()
{
LL p,b,n;
while(~scanf("%lld%lld%lld",&p,&b,&n))
{
giant_step_baby_step(b,n,p);
}
return 0;
}

POJ 2417 Discrete Logging 离散对数的更多相关文章

  1. BSGS算法+逆元 POJ 2417 Discrete Logging

    POJ 2417 Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4860   Accept ...

  2. poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2831   Accepted: 1391 ...

  3. POJ 2417 Discrete Logging (Baby-Step Giant-Step)

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2819   Accepted: 1386 ...

  4. POJ - 2417 Discrete Logging(Baby-Step Giant-Step)

    d. 式子B^L=N(mod P),给出B.N.P,求最小的L. s.下面解法是设的im-j,而不是im+j. 设im+j的话,貌似要求逆元什么鬼 c. /* POJ 2417,3243 baby s ...

  5. POJ 2417 Discrete Logging ( Baby step giant step )

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3696   Accepted: 1727 ...

  6. POJ 2417 Discrete Logging(离散对数-小步大步算法)

    Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 ...

  7. poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)

    http://poj.org/problem?id=2417 A^x = B(mod C),已知A,B.C.求x. 这里C是素数,能够用普通的baby_step. 在寻找最小的x的过程中,将x设为i* ...

  8. POJ 2417 Discrete Logging BSGS

    http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...

  9. POJ 2417 Discrete Logging

    http://www.cnblogs.com/jianglangcaijin/archive/2013/04/26/3045795.html 给p,a,b求a^n==b%p #include<a ...

随机推荐

  1. C++经典笔试题及参考答案-趋势科技

    1.static有什么用途?(请至少说明两种) 答案:1)在函数体,一个被声明为静态的变量在这一函数被调用过程中维持其值不变. 2)在模块内(但在函数体外),一个被声明为静态的变量可以被模块内所用函数 ...

  2. Android中获取IMEI码

    Imei = ((TelephonyManager) getSystemService(TELEPHONY_SERVICE)) .getDeviceId(); 1.加入权限 在manifest.xml ...

  3. Java 开源博客——B3log Solo 0.6.1 正式版发布了!

    Java 开源博客 —— B3LOG Solo 0.6.1 正式版发布了!欢迎大家下载. 该版本主要是改善细节体验,并加入了一款 Metro 风格的皮肤. 特性 基于标签的文章分类 Ping Goog ...

  4. HDU 2444 The Accomodation of Students(推断是否是二分图)

    题目链接 题意:n个学生,m对关系,每一对互相认识的能住一个房间.问否把这些学生分成两组,要求每组的学生都互不认识.求最多须要多少个房间. 能否分成两组?也就是说推断是不是二分图,推断二分图的办法,用 ...

  5. C++&&Mysql&&codeblocks

    #include <iostream> #include <stdio.h> #include <winsock2.h> #include <mysql.h& ...

  6. web开发性能优化---用户体验篇

    怎样从技术角度怎样增强用户体验.都是非常多平台都在做的事情,依据个人实际经验碰到几种体验做下总结. 1.降低页面刷新白屏 适当使用ajax技术.改善刷新白屏现象. 2.信息提醒,邮件.站内信.短信在购 ...

  7. 解决windows下的mysql匿名登陆无法使用mysql数据库的问题

    原文:解决windows下的mysql匿名登陆无法使用mysql数据库的问题 我在windows下安装了mysql,但是不用密码就能登进去,而root明明是有密码的,我用select user()命令 ...

  8. 【瞎搞】 HDU 3101 The Heart of the Country

    比赛时愣是没读懂 题意:有N 个城市 每一个城市都有 val 个 士兵 , 有几条路连接 当敌方攻击你的某个城市时 该城市以及与该城市相连接的城市的士兵总数 要大于 K 不大于 K 该城市就被攻陷.士 ...

  9. android动画-动画分类及代码演示样例

    原来一直对动画一知半解,仅仅知道依照网上的方法会用即可了,可是自己写起来感觉确实有点费劲,今天最终研究了代码实现,一下子感觉清晰多了.先把总结例如以下,代码中有具体的凝视. 动画分类 1.Peoper ...

  10. Python – Get Object’s Class Name | Ridge Solutions, Ireland

    Python – Get Object’s Class Name | Ridge Solutions, Ireland Python – Get Object’s Class Name Author: ...