Spark&Spark性能调优实战
Spark特别适用于多次操作特定的数据,分mem-only和mem & disk。当中mem-only:效率高,但占用大量的内存,成本非常高;mem
& disk:内存用完后,会自己主动向磁盘迁移,攻克了内存不足的问题,却带来了数据的置换的消费。Spark常见的调优工具有nman、Jmeter和Jprofile,下面是Spark调优的一个实例分析:
1、场景:精确客户群
对一个容量为300g的客户信息表在spark上进行查询优化,该大宽表有1800多列。有效使用的有20列。
2、优化达到的效果:查询由原来的40.232s减少为2.7s
3、优化过程分析
第一步:首先发现磁盘存在大量的iowait,通过查看相关日志文件,发现一个block的大小进而推算出整个数据文件大小为300G整个内存无法容纳,採用压缩的方法实现优化。结合本数据文件的特点。存在大量的0和1,选
Gzip算法进行压缩。压缩后的大小为1.9G,该步使得查询从40.232降为了20.12s。
第二步:大宽表存在1800多列。而有效使用的仅仅有20多列,故通过RCFILE仅仅将有效的列载入。该步使得查询从20s降为12s。
第三步:通过Jprofile分析出CPU的负载过高,究竟是什么原因造成的,细致发现序列化机制有问题。Spark的serialization框架有两种:java自身的和kryo的。当中kryo
是一个高速高效的Java对象图形序列化框架,主要特点是性能、高效和易用,换成kryo后,查询从12s降到7s。
第四步:进一步分析CPU各核负载量非常不均匀。内存也没实用满,系统的资源没有得到充分利用,该怎样利用? (1)Spark的RDD的partition个数创建task的个数是相应的;(2)Partition的个数在hadoop的RDD中由block的个数决定的,内存:系统总内存数=work内存大小*work数=SPARK_WORKER_MEMORY*SPARK_WORKER_INSTANCES;
CPU:系统总的task数=work数×work所占的cores数=SPARK_WORKER_INSTANCES*SPARK_WORKER_CORES,计算task并行度。内存分配情况,调优參数:
SPARK_WORKER_INSTANCES=4
SPARK_WORKER_CORES = 3
SPARK_WORKER_MEMORY = 6G
Cpu(12core) mem(24G),通过这几个參数的优化,查询由7s降到5s。
第五步:进一步发现Sharkserver端出现明显的fullGC,通过调优參数
Export SHARK_MASTER_MEM=2g,该步由6s降到3sl;
第六步:又发现当两表关联时,cpu
出现瓶颈,分析原因是日表做了gzip压缩,优化方法:日表不使用gzip压缩。将日表做成内存表。查询从3s降到2s。
4、总结
优化是一个逐步求精的过程,回想该优化过程,主要是从下面几个因素考虑:(1)mem;(2)cpu;(3)dis;(4)网络IO;(5)序列化机制。
认真这些因素为主线,挖掘与其相关的内容时行大胆尝试。
Spark&Spark性能调优实战的更多相关文章
- JVM 性能调优实战之:一次系统性能瓶颈的寻找过程
玩过性能优化的朋友都清楚,性能优化的关键并不在于怎么进行优化,而在于怎么找到当前系统的性能瓶颈.性能优化分为好几个层次,比如系统层次.算法层次.代码层次…JVM 的性能优化被认为是底层优化,门槛较高, ...
- JVM 性能调优实战之:使用阿里开源工具 TProfiler 在海量业务代码中精确定位性能代码
本文是<JVM 性能调优实战之:一次系统性能瓶颈的寻找过程> 的后续篇,该篇介绍了如何使用 JDK 自身提供的工具进行 JVM 调优将 TPS 由 2.5 提升到 20 (提升了 7 倍) ...
- spring-petclinic性能调优实战(转)
1.spring-petclinic介绍 spring-petclinic是spring官方做的一个宠物商店,结合了spring和其他一些框架的最佳实践. 架构如下: 1)前端 Thymeleaf做H ...
- Apache Pulsar 在 BIGO 的性能调优实战(上)
背景 在人工智能技术的支持下,BIGO 基于视频的产品和服务受到广泛欢迎,在 150 多个国家/地区拥有用户,其中包括 Bigo Live(直播)和 Likee(短视频).Bigo Live 在 15 ...
- Java性能调优实战,覆盖80%以上调优场景
Java 性能调优对于每一个奋战在开发一线的技术人来说,随着系统访问量的增加.代码的臃肿,各种性能问题便会层出不穷. 日渐复杂的系统,错综复杂的性能调优,都对Java工程师的技术广度和技术深度提出了更 ...
- 高性能 Java 计算服务的性能调优实战
作者:vivo 互联网服务器团队- Chen Dongxing.Li Haoxuan.Chen Jinxia 随着业务的日渐复杂,性能优化俨然成为了每一位技术人的必修课.性能优化从何着手?如何从问题表 ...
- PHP 性能分析第三篇: 性能调优实战
注意:本文是我们的 PHP 性能分析系列的第三篇,点此阅读 PHP 性能分析第一篇: XHProf & XHGui 介绍 ,或 PHP 性能分析第二篇: 深入研究 XHGui. 在本系列的 ...
- Tomcat性能调优实战
今日帮朋友做了tomcat性能调优的实际操作,心得记录一下. 服务器:Windows2017 配置:CPU 4 内存 8G Tomcat8.0+版本. 压力测试工具:apache-jmeter-4.0 ...
- spark sql 的性能调优
Caching Data in Memory 其他调优参数
随机推荐
- 四大流行的java连接池之BoneCP篇
BoneCP 是一个开源的快速的 JDBC 连接池.BoneCP很小,只有四十几K(运行时需要log4j和Google Collections的支持,这二者加起来就不小了),而相比之下C3P0 要六百 ...
- JS中setTimeout()的使用方法具体解释
1. SetTimeOut() 1.1 SetTimeOut()语法样例 1.2 用SetTimeOut()运行Function ...
- 有关android工程的构建脚本(build.xml)的学习
学习[android-sdk-linux根目录]/tools/ant/build.xml,觉得如下几点很有用,记录之 1)ant脚本中属性值是于前置定义优化的原则,即属性发生重复定义时,前面定义的值不 ...
- 【linux】arm mm内存管理
欢迎转载,转载时请保留作者信息,谢谢. 邮箱:tangzhongp@163.com 博客园地址:http://www.cnblogs.com/embedded-tzp Csdn博客地址:http:// ...
- Ch03 视图基础
3.1 视图简介 3.1.1 选择待渲染视图 3.1.2 重写视图名 3.2 给视图传递数据 3.2.1 ViewDataDictionary 3.2.2 ViewBag 3.2.3 带 ...
- boost之program_options库,解析命令行参数、读取配置文件
一.命令行解析 tprogram_options解析命令行参数示例代码: #include <iostream> using namespace std; #include <boo ...
- 【数位DP】 HDU 4722 Good Numbers
原题直通车: HDU 4722 Good Numbers 题意: 求区间[a,b]中各位数和mod 10==0的个数. 代码: #include<iostream> #include& ...
- Eclipse用法和技巧十一:分栏显示
在编码的时候,有时候需要同时看到两个文件的代码.或者在代码走读的时候,能同时看到两个文件的代码能加快我们对代码的理解.来看看如何在eclipse中同时显示两个文件的代码. 步骤一:拖住一 ...
- Nginx 负载均衡配置和策略
Nginx 的 HttpUpstreamModule 提供对后端(backend)server的简单负载均衡.一个最简单的 upstream 写法例如以下: upstream backend { se ...
- JSP自定义标签——传统标签
同JSP标签一样,自定义标签主要用于移除JSP页面中的Java代码,可以看到我们在JSP中其实是禁止使用Java脚本的,任何要想通过Java代码实现的功能都必须以标签形式来处理,可以使用JSP标签,J ...