~~~题面~~~

题解:

  偶然翻到这道题,,,就写了。

  观察到一个数被插在哪里只受前一个数的影响,如果明确了前一个数是哪个,那么我们就可以确定大小关系,就可以知道当前这个数插在哪里,而上一个插入的数就是上一个数,所以根据这个来设DP状态。  
  f[i][j]表示满足理想数列的i ~ j,且i是最后一个插入的方案数,g[i][j]表示满足理想数列的i ~ j,且j是最后一个插入的方案数。

  那么转移就比较明显了。

  根据最后一个插入的是i或j可以知道是从哪个区间转移而来,然后只需要枚举一下是否可以从f数组或者g数组转移即可。判断条件就是上一个插入的数与当前数的大小关系是否可以使得当前数插入到正确的位置(前面or后面)

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 1100
#define mod 19650827 int n, ans;
int s[AC], f[AC][AC], g[AC][AC]; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} inline void up(int &a, int b)
{
a += b;
if(a > mod) a -= mod;
} void pre()
{
n = read();
for(R i = ; i <= n; i ++) s[i] = read();
} void work()
{
for(R i = ; i <= n; i ++)//枚举长度
{
int b = n - i + ;
for(R j = ; j <= b; j ++)
{
int l = j + i - ;//获取右端点
if(j == l){f[j][l] = ; continue;}
if(s[j] < s[j + ]) up(f[j][l], f[j + ][l]);
if(s[j] < s[l]) up(f[j][l], g[j + ][l]);
if(s[l] > s[j]) up(g[j][l], f[j][l - ]);
if(s[l] > s[l - ]) up(g[j][l], g[j][l - ]);
}
}
up(ans, f[][n]), up(ans, g[][n]);
printf("%d\n", ans);
} int main()
{
// freopen("in.in", "r", stdin);
pre();
work();
// fclose(stdin);
return ;
}

[HNOI2010]合唱队 区间DP的更多相关文章

  1. P3205 [HNOI2010]合唱队[区间dp]

    题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...

  2. 【BZOJ1996】【HNOI2010】合唱队 [区间DP]

    合唱队 Time Limit: 4 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description Input Output Sample ...

  3. BZOJ1996:[HNOI2010]CHORUS 合唱队(区间DP)

    Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Output 8 HINT Solution 辣鸡guide真难用 ...

  4. [HNOI2010]CHORUS 合唱队 (区间DP)

    题目描述 对于一个包含 NN 个整数的数列 AA ,我们可以把它的所有元素加入一个双头队列 BB . 首先 A1A1 作为队列的唯一元素,然后依次加入 A2∼ANA2∼AN ,如果 Ai<Ai− ...

  5. LG3205/BZOJ1996 「HNOI2010」合唱队 区间DP

    区间DP 区间DP: 显然是一个区间向左右拓展形成的下一个区间,具有包含关系,所以可以使用区间DP. 状态设计: 考虑和关路灯一样设计状态 因为不知道当前这个区间是从哪个区间拓展而来,即不知道这个区间 ...

  6. 【BZOJ1996】[Hnoi2010]chorus 合唱队 区间DP

    [BZOJ1996][Hnoi2010]chorus 合唱队 Description Input Output Sample Input 4 1701 1702 1703 1704 Sample Ou ...

  7. 洛谷P3205合唱队——区间DP

    题目:https://www.luogu.org/problemnew/show/P3205 枚举点,分类为上一个区间的左端点或右端点,满足条件便+=即可: 注意不要重复(当l=2时). 代码如下: ...

  8. BZOJ1996 合唱队 区间DP

    OJ地址:http://www.lydsy.com/JudgeOnline/problem.php?id=1996 设dp(i,j,k)代表在理想结果中[i,j]段最后添加的是i或j(k=0or1) ...

  9. LG2145 「JSOI2007」祖码 区间DP

    问题描述 LG2145 题解 把颜色相同的一段看做一个点. 然后类似于合唱队区间DP即可. 但是这题好像出过一些情况,导致我包括题解区所有人需要特判最后一个点. \(\mathrm{Code}\) # ...

随机推荐

  1. ROS(一)Topic 通信

    ROS系统起源于2007年斯坦福大学人工智能实验室的项目与机器人技术公司Willow Garage的个人机器人项目(Personal Robots Program)之间的合作,2008年之后就由Wil ...

  2. Ruby 基础教程1-6

    1.循环实现方法 循环语句 (while;for; loop,until) 循环方法(times,each) 2.for           for 变量 in 对象             主体   ...

  3. 「日常训练」 Yukari's Birthday(ZOJ-3665)

    题意与分析 二分题.考虑到n的范围是\(10^{12}\),注意到等比公式\(S=a_1\frac{1-q^n}{1-q} (q\ne 1)\),可以看出,不论q有多大(1除外,这个时候\(r=1,k ...

  4. TPO-14 C2 Prepare for a career in journalism

    TPO-14 C2 Prepare for a career in journalism 第 1 段 1.Listen to a conversation between a student and ...

  5. python邮件服务-yagmail

      下载安装 yagmail import yagmail #链接邮箱服务器 #此处的password是授权码 yag= yagmail.SMTP( user="843092012@qq.c ...

  6. Halcon和visionPro的比较

    很多朋友会问到visionpro和halcon这两款机器视觉软件,到底学哪个好呢,今天重码网就给大家讲一讲: 首先比较下两者的优缺点: halcon: 提供的图像算法要比Visionpro多,也就是说 ...

  7. 【转载】android 常用开源框架

    对于Android初学者以及对于我们菜鸟,这些大神们开发的轻量级框架非常有用(更别说开源的了). 下面转载这10个框架的介绍:(按顺序来吧没有什么排名). 一.  Afinal 官方介绍: Afina ...

  8. [C++] Variables and Basic Types

    Getting Started compile C++ program source $ g++ -o prog grog1.cc run C++ program $ ./prog The libra ...

  9. HDU 3264/POJ 3831 Open-air shopping malls(计算几何+二分)(2009 Asia Ningbo Regional)

    Description The city of M is a famous shopping city and its open-air shopping malls are extremely at ...

  10. Notes of the scrum meeting(12.11)

    meeting time:19:30~20:30p.m.,December 11th,2013 meeting place:3号公寓一层 attendees: 顾育豪                  ...