题目描述

windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,在A和B之间,包括A和B,总共有多少个windy数?

输入

包含两个整数,A B。

输出

一个整数,表示答案

样例输入

【输入样例一】
1 10
【输入样例二】
25 50

样例输出

【输出样例一】
9
【输出样例二】
20


题解

数位dp

快联赛了重写了一下,发现以前写的太傻逼了= =

由于加一个数位的贡献只与最高位有关,因此设 $f[i][j]$ 表示 $i$ 位数,最高位为 $j$ 的数的个数。

那么显然可以得到 $f[i][j]=\sum\limits_{|j-k|\le 2}f[i-1][k]$ 。

预处理出 $f$ 数组后即可进行数位dp。

先把位数不满的算上,然后再从高位到低位把该位不满的加入答案中。

此时需要记录上一个数位是什么,在枚举当前数位时需要满足当前位的条件。并且如果上一个与当前数位产生冲突则不再有满足条件的数,应当跳出循环。

把询问区间转化为 $[1,n)$ 的半开半闭区间更容易处理一些。

代码中为了避免一些细节(比如最高位只能处理到 $2*10^9$ 之类的),开了long long。

#include <cstdio>
typedef long long ll;
ll f[11][10] , b[11];
inline int abs(int x)
{
return x > 0 ? x : -x;
}
void init()
{
int i , j , k;
b[0] = 1 , b[1] = 10;
for(i = 0 ; i < 10 ; i ++ ) f[1][i] = 1;
for(i = 2 ; i < 11 ; i ++ )
{
b[i] = b[i - 1] * 10;
for(j = 0 ; j < 10 ; j ++ )
for(k = 0 ; k < 10 ; k ++ )
if(abs(j - k) >= 2)
f[i][j] += f[i - 1][k];
}
}
ll calc(ll n)
{
int i , j , last = -1 , di = 1;
ll ans = 0;
for(i = 1 ; b[i] <= n ; i ++ )
for(j = 1 ; j < 10 ; j ++ )
ans += f[i][j];
for( ; i ; i -- )
{
for(j = di ; j < n / b[i - 1] % 10 ; j ++ )
if(abs(j - last) >= 2)
ans += f[i][j];
if(abs(n / b[i - 1] % 10 - last) < 2) break;
last = n / b[i - 1] % 10 , di = 0;
}
return ans;
}
int main()
{
init();
ll n , m;
scanf("%lld%lld" , &n , &m);
printf("%lld\n" , calc(m + 1) - calc(n));
return 0;
}

【bzoj1026】[SCOI2009]windy数 数位dp的更多相关文章

  1. BZOJ1026: [SCOI2009]windy数[数位DP]

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6346  Solved: 2831[Submit][Sta ...

  2. [bzoj1026][SCOI2009]windy数——数位dp

    题目 求[a,b]中的windy数个数. windy数指的是任意相邻两个数位上的数至少相差2的数,比如135是,134不是. 题解 感觉这个题比刚才做的那个简单多了...这个才真的应该是数位dp入门题 ...

  3. HDU2089 不要62 BZOJ1026: [SCOI2009]windy数 [数位DP]

    基础题复习 这次用了dfs写法,感觉比较好 #include <iostream> #include <cstdio> #include <cstring> #in ...

  4. 【BZOJ-1026】windy数 数位DP

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5230  Solved: 2353[Submit][Sta ...

  5. bzoj 1026 [SCOI2009]windy数 数位dp

    1026: [SCOI2009]windy数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  6. luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索

    题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...

  7. 题解 BZOJ1026 & luogu P2657 [SCOI2009]windy数 数位DP

    BZOJ & luogu 看到某大佬AC,本蒟蒻也决定学习一下玄学的数位$dp$ (以上是今年3月写的话(叫我鸽神$qwq$)) 思路:数位$DP$ 提交:2次 题解:(见代码) #inclu ...

  8. 洛谷P2657 [SCOI2009]windy数 [数位DP,记忆化搜索]

    题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个win ...

  9. P2657 [SCOI2009]windy数 数位dp

    数位dp之前完全没接触过,所以NOIP之前搞一下.数位dp就是一种dp,emm……用来求解区间[L,R]内满足某个性质的数的个数,且这个性质与数的大小无关. 在这道题中,dp[i][j]代表考虑了i位 ...

随机推荐

  1. Java设计模式(3)——创建型模式之抽象工厂模式(Abstract Factory)

    一.概述 抽象工厂模式是指当有多个抽象角色时,使用的一种工厂模式.抽象工厂模式可以向客户端提供一个接口,使客户端在不必指定产品的具体情况下,创建多个产品族中的产品对象. UML图: 其他的过多概念不再 ...

  2. Java基础—ArrayList源码浅析

    注:以下源码均为JDK8的源码 一. 核心属性 基本属性如下: 核心的属性其实是红框中的两个: //从注释也容易看出,一个是集合元素,一个是集合长度(注意是逻辑长度,即元素的个数,而非数组长度) 其中 ...

  3. 北京Uber优步司机奖励政策(3月16日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. 深入解析UUID及其应用(转载)

    UUID 编辑 UUID含义是通用唯一识别码 (Universally Unique Identifier),这 是一个软件建构的标准,也是被开源软件基金会 (Open Software Founda ...

  5. dubbo入门(一)

    1.简介 Dubbo由阿里巴巴开源,是一个分布式服务框架,致力于提供高性能和透明化的RPC(远程过程调用)远程服务调用方案,以及SOA服务治理方案.如果没有分布式的需求,Dbubbo是不需要的,其本质 ...

  6. 「知识学习&日常训练」莫队算法(一)(Codeforce Round #340 Div.2 E)

    题意 (CodeForces 617E) 已知一个长度为\(n\)的整数数列\(a[1],a[2],-,a[n]\),给定查询参数\(l,r\),问\([l,r]\)内,有多少连续子段满足异或和等于\ ...

  7. centos下php环境安装redis

    一.安装redis(仅可在服务器使用,尚不能通过浏览器访问) (1)首先下载redis:wget http://download.redis.io/releases/redis-4.0.9.tar.g ...

  8. MATLAB实现连续周期信号的频谱分析(正余弦波信号举例)

    关于MATLAB实现连续信号的频谱分析,以正余弦波信号频谱分析为例分析如下: 1.含有频率f ,2f和3f的正弦波叠加信号,即: 其中,f =500Hz.试采用Matlab仿真软件对该信号进行频谱分析 ...

  9. BehaviorDesigner学习

    行为树: 行为树设计师插件是一个专门为unity设计的AI插件. 学习用!!!插件地址:链接:http://pan.baidu.com/s/1dF2okPN 密码:b43m 通过继承Behavior中 ...

  10. 【20180808模拟测试】T2 k-斐波那契

    描述 k-斐波拉契数列是这样的 f(0)=k;f(1)=k;f(n)=(f(n-1)+f(n-2))%P(n>=2); 现在我们已经知道了f(n)=1,和P: k的范围是[1,P); 求k的所有 ...