[USACO06NOV]玉米田Corn Fields 状压DP
题面:
农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。
遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。
John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)
输出一个整数,即牧场分配总方案数除以100,000,000的余数。
题解:
emmm。。。一道不难的状压DP
设f[i][j]表示到i行,状态为j的方案数,
因为相邻两块土地不能选,所以我们可以先dfs搜出所有可能状态,
这样状态数暴跌10倍,,,貌似很划得来的样子,不过不这样好像也可以,但是DP判断的地方也会麻烦一些。。。
然后存下不能放的地方,并标记为1,(同样用状压)
依次枚举行,当前状态,上一行状态,统计并取模即可
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 15
#define LL long long
#define mod 100000000
int n,m,tmp,ans,tot;
int f[AC][],s[AC],num[];//error!!!状态要开400,,, void pre()
{
int a;
scanf("%d%d",&n,&m);
for(R i=;i<=n;i++)
for(R j=;j<=m;j++)
{
scanf("%d",&a);
if(!a) s[i] |= << (m - j);//给定状态也要压
}
} void dfs(int x,int now)
{
if(x) tmp+= << (m - now);
if(now == m)
{
num[++tot]=tmp;
if(x) tmp-= << (m - now);
return ;
}
if(x) dfs(,now+);
else
{
dfs(,now+);
dfs(,now+);
}
if(x) tmp-= << (m - now);
} void work()
{
for(R i=;i<=tot;i++)//第一行特殊处理
{
if(s[] & num[i]) continue;
f[][i]=;
}
for(R i=;i<=n;i++)//枚举行
{
for(R j=;j<=tot;j++)//枚举当前行状态
{
if(s[i] & num[j]) continue;
for(R k=;k<=tot;k++)//枚举上一行状态
{
if(s[i-] & num[k]) continue;
if(num[j] & num[k]) continue;
f[i][j] += f[i-][k];
f[i][j] %= mod;
//if(f[i][j] > mod) f[i][j] -= mod;
}
}
}
for(R i=;i<=tot;i++)
{
ans+=f[n][i];
ans%=mod;
//if(ans > mod) ans-=mod;
}
printf("%d\n",ans);
} int main()
{
// freopen("in.in","r",stdin);
pre();
dfs(,);//获取所有有效状态
dfs(,);
work();
//fclose(stdin);
return ;
}
[USACO06NOV]玉米田Corn Fields 状压DP的更多相关文章
- P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp
正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...
- [USACO06NOV]玉米田Corn Fields (状压$dp$)
题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 块草皮,且最后一位状态为 \(k\) . 同时多记录一个每一列中的 ...
- P1879 [USACO06NOV]玉米田Corn Fields (状压dp入门)
题目链接: https://www.luogu.org/problemnew/show/P1879 具体思路: 我们可以先把所有合法的情况枚举出来,然后对第一行判断有多少种情况满足,然后对于剩下的行数 ...
- P1879 [USACO06NOV]玉米田Corn Fields(状压dp)
P1879 [USACO06NOV]玉米田Corn Fields 状压dp水题 看到$n,m<=12$,肯定是状压鸭 先筛去所有不合法状态,蓝后用可行的状态跑一次dp就ok了 #include& ...
- 状压DP【洛谷P1879】 [USACO06NOV]玉米田Corn Fields
P1879 [USACO06NOV]玉米田Corn Fields 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形 ...
- 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)
洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...
- C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields
没学状压DP的看一下 合法布阵问题 P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...
- 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解
P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...
- [USACO06NOV]玉米田$Corn \ \ Fields$ (状压$DP$)
#\(\mathcal{\color{red}{Description}}\) \(Link\) 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ ...
随机推荐
- 通过反编译看Java String及intern内幕--费元星站长
通过反编译看Java String及intern内幕 一.字符串问题 字符串在我们平时的编码工作中其实用的非常多,并且用起来也比较简单,所以很少有人对其做特别深入的研究.倒是面试或者笔试的时候,往 ...
- 聊聊WS-Federation(test)
本文来自网易云社区 单点登录(Single Sign On),简称为 SSO,目前已经被大家所熟知.简单的说, 就是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统. 举例: 我们 ...
- Visual Studio 起始页中不显示最近使用的项目的解决办法
将 HKEY_CURRENT_USER/Software/Microsoft/Windows/CurrentVersion/Policies/Explorer/NoRecentDocsHistory的 ...
- CentOS 7.2安装11g Grid Infrastructure
Preface Oracle claimed that 11g RAC is supported on Redhat Linux 7 and above version,but the ...
- QT 标题栏隐藏可拖拽
这个也是我网上找到了 为了方便,记录一下 void mousePressEvent(QMouseEvent *e); void mouseMoveEvent(QMouseEvent *e); void ...
- Java开发工程师(Web方向) - 01.Java Web开发入门 - 第2章.HTTP协议简介
第2章--HTTP协议简介 HTTP协议简介 Abstract: HTTP协议的特性,HTTP请求/响应的过程,HTTP请求/响应的报文格式等知识,最后会演示如何通过Chrome提供的开发者工具,去跟 ...
- django 连接mysql报错
原因: 问题1. 即从mysql5.7版本之后,默认采用了caching_sha2_password验证方式. 问题2. 然后在执行 python manage.py makemigrations依 ...
- android 出现Make sure the Cursor is initialized correctly before accessing data from it
Make sure the Cursor is initialized correctly before accessing data from it 详细错误是:java.lang.IllegalS ...
- lintcode-171-乱序字符串
171-乱序字符串 给出一个字符串数组S,找到其中所有的乱序字符串(Anagram).如果一个字符串是乱序字符串,那么他存在一个字母集合相同,但顺序不同的字符串也在S中. 注意事项 所有的字符串都只包 ...
- python中装饰器的原理以及实现,
python版本 3.6 1.python的装饰器说白了就是闭包函数的一种应用场景,在运用的时候我们遵循 #开放封闭原则:对修改封闭,对拓展开放 2.什么是装饰器 #装饰他人的器具,本身可以是任意可调 ...