题面:

农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输出一个整数,即牧场分配总方案数除以100,000,000的余数。

题解:

emmm。。。一道不难的状压DP

设f[i][j]表示到i行,状态为j的方案数,

因为相邻两块土地不能选,所以我们可以先dfs搜出所有可能状态,

这样状态数暴跌10倍,,,貌似很划得来的样子,不过不这样好像也可以,但是DP判断的地方也会麻烦一些。。。

然后存下不能放的地方,并标记为1,(同样用状压)

依次枚举行,当前状态,上一行状态,统计并取模即可

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 15
#define LL long long
#define mod 100000000
int n,m,tmp,ans,tot;
int f[AC][],s[AC],num[];//error!!!状态要开400,,, void pre()
{
int a;
scanf("%d%d",&n,&m);
for(R i=;i<=n;i++)
for(R j=;j<=m;j++)
{
scanf("%d",&a);
if(!a) s[i] |= << (m - j);//给定状态也要压
}
} void dfs(int x,int now)
{
if(x) tmp+= << (m - now);
if(now == m)
{
num[++tot]=tmp;
if(x) tmp-= << (m - now);
return ;
}
if(x) dfs(,now+);
else
{
dfs(,now+);
dfs(,now+);
}
if(x) tmp-= << (m - now);
} void work()
{
for(R i=;i<=tot;i++)//第一行特殊处理
{
if(s[] & num[i]) continue;
f[][i]=;
}
for(R i=;i<=n;i++)//枚举行
{
for(R j=;j<=tot;j++)//枚举当前行状态
{
if(s[i] & num[j]) continue;
for(R k=;k<=tot;k++)//枚举上一行状态
{
if(s[i-] & num[k]) continue;
if(num[j] & num[k]) continue;
f[i][j] += f[i-][k];
f[i][j] %= mod;
//if(f[i][j] > mod) f[i][j] -= mod;
}
}
}
for(R i=;i<=tot;i++)
{
ans+=f[n][i];
ans%=mod;
//if(ans > mod) ans-=mod;
}
printf("%d\n",ans);
} int main()
{
// freopen("in.in","r",stdin);
pre();
dfs(,);//获取所有有效状态
dfs(,);
work();
//fclose(stdin);
return ;
}

[USACO06NOV]玉米田Corn Fields 状压DP的更多相关文章

  1. P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp

    正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...

  2. [USACO06NOV]玉米田Corn Fields (状压$dp$)

    题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 块草皮,且最后一位状态为 \(k\) . 同时多记录一个每一列中的 ...

  3. P1879 [USACO06NOV]玉米田Corn Fields (状压dp入门)

    题目链接: https://www.luogu.org/problemnew/show/P1879 具体思路: 我们可以先把所有合法的情况枚举出来,然后对第一行判断有多少种情况满足,然后对于剩下的行数 ...

  4. P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    P1879 [USACO06NOV]玉米田Corn Fields 状压dp水题 看到$n,m<=12$,肯定是状压鸭 先筛去所有不合法状态,蓝后用可行的状态跑一次dp就ok了 #include& ...

  5. 状压DP【洛谷P1879】 [USACO06NOV]玉米田Corn Fields

    P1879 [USACO06NOV]玉米田Corn Fields 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形 ...

  6. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  7. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  8. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  9. [USACO06NOV]玉米田$Corn \ \ Fields$ (状压$DP$)

    #\(\mathcal{\color{red}{Description}}\) \(Link\) 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ ...

随机推荐

  1. VS2015 更改C++模式

    亲爱的小伙伴,有没有发现你们的VS2015装完以后和老江湖们用的不一样了,人家的界面打开是这样的 而你的界面打开是这样的 虽然看是只有一左一右的区别,但是内在确实有好多不一样. 想不想想老江湖一样,拥 ...

  2. 怎样通过Qt编写C/C++代码查询当前Linux的版本号?

    遇到一个问题:如题. 我的开发环境是:嵌入式ARM + Linux系统 + Qt 4.5 + C/C++ 现在需要查询 当前Linux系统的版本号. 问题: 1)Qt 4.5 提供怎样的API来获取? ...

  3. Objective-C 构造方法 分类 类的深入研究

    构造方法 1.对象创建的原理 new的拆分两部曲 Person *p = [Person alloc]; 分配内存(+alloc) Person *p = [p init]; 初始化(-init) 合 ...

  4. Python字典操作大全

    //2018.11.6 Python字典操作 1.对于python编程里面字典的定义有以下几种方法: >>> a = dict(one=1, two=2, three=3) > ...

  5. UML类图(Class Diagram)中类与类之间的关系及表示方式(转)

    源地址:https://blog.csdn.net/a19881029/article/details/8957441 ======================================== ...

  6. 剑指offer-二叉树中和为某一值的路径24

    题目描述 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长度大 ...

  7. 机器学习-支持向量机SVM

    简介: 支持向量机(SVM)是一种二分类的监督学习模型,他的基本模型是定义在特征空间上的间隔最大的线性模型.他与感知机的区别是,感知机只要找到可以将数据正确划分的超平面即可,而SVM需要找到间隔最大的 ...

  8. Spring Boot - Filter实现简单的Http Basic认证

    Copy自http://blog.csdn.net/sun_t89/article/details/51916834 @SpringBootApplicationpublic class Spring ...

  9. SGU 176 Flow construction(有源汇上下界最小流)

    Description 176. Flow construction time limit per test: 1 sec. memory limit per test: 4096 KB input: ...

  10. HDU 3007 Buried memory(计算几何の最小圆覆盖,模版题)

    Problem Description Each person had do something foolish along with his or her growth.But,when he or ...