【bzoj1798】[Ahoi2009]Seq 维护序列seq 线段树
题目描述
老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。
输入
第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
输出
对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。
样例输入
7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7
样例输出
2
35
题解
线段树裸题
唯一要注意的是两种标记的处理:pushdown中始终是先乘后加,而在乘的时候把原有的加标记也乘上这个数。原理应该不难想。
#include <cstdio>
#include <cstring>
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
typedef long long lint;
lint mod , sum[400010] , add[400010] , mul[400010];
void pushup(int x)
{
sum[x] = (sum[x << 1] + sum[x << 1 | 1]) % mod;
}
void pushdown(int l , int r , int x)
{
int mid = (l + r) >> 1;
if(mul[x] != 1)
{
sum[x << 1] = sum[x << 1] * mul[x] % mod;
sum[x << 1 | 1] = sum[x << 1 | 1] * mul[x] % mod;
add[x << 1] = add[x << 1] * mul[x] % mod;
add[x << 1 | 1] = add[x << 1 | 1] * mul[x] % mod;
mul[x << 1] = mul[x << 1] * mul[x] % mod;
mul[x << 1 | 1] = mul[x << 1 | 1] * mul[x] % mod;
mul[x] = 1;
}
if(add[x])
{
sum[x << 1] = (sum[x << 1] + add[x] * (mid - l + 1)) % mod;
sum[x << 1 | 1] = (sum[x << 1 | 1] + add[x] * (r - mid)) % mod;
add[x << 1] = (add[x << 1] + add[x]) % mod;
add[x << 1 | 1] = (add[x << 1 | 1] + add[x]) % mod;
add[x] = 0;
}
}
void build(int l , int r , int x)
{
mul[x] = 1;
if(l == r)
{
scanf("%lld" , &sum[x]);
sum[x] %= mod;
return;
}
int mid = (l + r) >> 1;
build(lson);
build(rson);
pushup(x);
}
void updatemul(int b , int e , lint m , int l , int r , int x)
{
if(b <= l && r <= e)
{
sum[x] = sum[x] * m % mod;
add[x] = add[x] * m % mod;
mul[x] = mul[x] * m % mod;
return;
}
pushdown(l , r , x);
int mid = (l + r) >> 1;
if(b <= mid) updatemul(b , e , m , lson);
if(e > mid) updatemul(b , e , m , rson);
pushup(x);
}
void updateadd(int b , int e , lint a , int l , int r , int x)
{
if(b <= l && r <= e)
{
sum[x] = (sum[x] + a * (r - l + 1)) % mod;
add[x] = (add[x] + a) % mod;
return;
}
pushdown(l , r , x);
int mid = (l + r) >> 1;
if(b <= mid) updateadd(b , e , a , lson);
if(e > mid) updateadd(b , e , a , rson);
pushup(x);
}
lint query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e)
return sum[x];
pushdown(l , r , x);
int mid = (l + r) >> 1;
lint ans = 0;
if(b <= mid) ans = (ans + query(b , e , lson)) % mod;
if(e > mid) ans = (ans + query(b , e , rson)) % mod;
return ans;
}
int main()
{
int n , m , p , l , r;
lint k;
scanf("%d%lld" , &n , &mod);
build(1 , n , 1);
scanf("%d" , &m);
while(m -- )
{
scanf("%d%d%d" , &p , &l , &r);
switch(p)
{
case 1: scanf("%lld" , &k); updatemul(l , r , k , 1 , n , 1); break;
case 2: scanf("%lld" , &k); updateadd(l , r , k , 1 , n , 1); break;
default: printf("%lld\n" , query(l , r , 1 , n , 1));
}
}
return 0;
}
【bzoj1798】[Ahoi2009]Seq 维护序列seq 线段树的更多相关文章
- 【BZOJ1798】【AHOI2009】维护序列(线段树)
题目链接 题解 这不就是luogu的线段树2的板子吗.... 没有任何的区别... 上代码吧... #include<iostream> #include<cstdio> #i ...
- BZOJ1798: [Ahoi2009]Seq 维护序列seq[线段树]
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 5504 Solved: 1937[Submit ...
- BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )
线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...
- bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...
- Bzoj 1798: [Ahoi2009]Seq 维护序列seq(线段树区间操作)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小可 ...
- bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 7773 Solved: 2792[Submit ...
- 1798: [Ahoi2009]Seq 维护序列seq
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 2930 Solved: 1087[Submit ...
- BZOJ_1798_[AHOI2009]维护序列_线段树
BZOJ_1798_[AHOI2009]维护序列_线段树 题意:老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: ( ...
- [AHOI 2009] 维护序列(线段树模板题)
1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec Memory Limit: 64 MB Description 老师交给小可可一个维护数列的任务,现在小 ...
随机推荐
- Scala快速入门到精通 视频教程 百度云网盘下载地址
Scala快速入门到精通 视频教程 百度云网盘下载地址 Scala快速入门到精通 下载地址链接:https://pan.baidu.com/s/1bqGIKyF 密码:ojwd
- BZOJ1821_Group部落划分_KEY
题目传送门 这是一道并查集的题目,相信很多人都看出来了. 用一个类似Kurskal的东西求出最近的最大值. 对于一些可以划分在同一个部落里的边,我们一定是优先选择短边合并. code: /****** ...
- 北京Uber优步司机奖励政策(3月22日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 苏州Uber优步司机奖励政策(1月4日~1月10日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Python-内置函数4
import time # 返回时间戳 t=time.time() print(t) name="one" ''' bin() oct() hex() bytes() ascii( ...
- 微信小程序学习笔记(1)-微信小程序样式设置逻辑
1.微信小程序的样式设置统一在每一页的.wxss的样式文件中,所有的样式设置代码统一写入这个文件中: 2.样式主要是通过.wxml里面控件的“class”属性来调用,此处调用会有几个细节要注意: 1) ...
- 【独家】K8S漏洞报告 | 近期bug fix解读&1.9.11主要bug fix汇总
*内容提要: 1. Kube-proxy长连接优雅断开机制及IPVS模式实现 2. 10/29--11/19 bug fix汇总分析 3. 1.9.11重要bug fix汇总 在本周的跟踪分析中,以1 ...
- Qt-QML-自定义个自己的文本Text
好久都没有正经的更新自己的文章了,这段时间也辞职了,听了小爱的,准备买个碗,自己当老板,下面请欣赏效果图 这个界面布局就是自己是在想不到啥了,按照常规汽车导航的布局布局了一下,主要看内容哈,看看这个文 ...
- MySQL☞sign函数
sign( )函数:判断数值的正负性,如果数值是正数,返回值是1,如果该数值是负数,返回值是-1,如果该数值是 0,返回值也是0. 格式: select sign(数值) from 表名 例子: 1. ...
- Spring Boot 示例项目
Spring Boot 基于注解式开发 maven REST 示例项目 项目地址:https://github.com/windwant/spring-boot-service 项目地址: ...