Lucas的裸题,学习一个。

#include<bits/stdc++.h>
#define N 100010
using namespace std;
typedef long long ll;
ll a[N];
int p;
ll pow(ll y,int z,int p){
y%=p;ll ans=;
for(int i=z;i;i>>=,y=y*y%p)if(i&)ans=ans*y%p;
return ans;
}
ll C(ll n,ll m){
if(m>n)return ;
return ((a[n]*pow(a[m],p-,p))%p*pow(a[n-m],p-,p)%p);
}
ll Lucas(ll n,ll m){
if(!m)return ;
return C(n%p,m%p)*Lucas(n/p,m/p)%p;
}
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
int T=read();
while(T--){
int n=read(),m=read();p=read();
a[]=;
for(int i=;i<=p;i++)a[i]=(a[i-]*i)%p;
cout<<Lucas(n+m,n)<<endl;
}
}

【HDU3037】Saving Beans的更多相关文章

  1. 【HDOJ】【3037】Saving Beans

    排列组合 啊……这题是要求c(n-1,0)+c(n,1)+c(n+1,2)+......+c(n+m-1,m) 这个玩意……其实就等于c(n+m,m) 好吧然后就是模P……Lucas大法好= = 我S ...

  2. 【HDU 3037】Saving Beans(卢卡斯模板)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  3. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  4. 【HDOJ】2430 Beans

    这题目用线段树超时了,其实也差不多应该超时.10^6大数据量.看了一下网上的解法是单调队列.大概了解了一下,是个挺有意思的数据结构.首先,需要求满足0<=(S[r]-S[l])%p<=k时 ...

  5. Solution -「Hdu3037」Saving Beans

    Prob. 给定 \(m\) 个相同球,\(n\) 个不同的盒子. 求在这 \(n\) 个盒子中放不超过 \(m\) 个球的方案数,并对 \(p\) 取模. 其中 \(1 \leq n, m \leq ...

  6. 【解决方案】 org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'userHandler': Injection of resource dependencies failed;

    一个错误会浪费好多青春绳命 鉴于此,为了不让大家也走弯路,分享解决方案. [错误代码提示] StandardWrapper.Throwableorg.springframework.beans.fac ...

  7. hdu3037 Saving Beans(Lucas定理)

    hdu3037 Saving Beans 题意:n个不同的盒子,每个盒子里放一些球(可不放),总球数<=m,求方案数. $1<=n,m<=1e9,1<p<1e5,p∈pr ...

  8. hdu3037 Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Pro ...

  9. HDOJ 3037 Saving Beans

    如果您有n+1树,文章n+1埋不足一棵树m种子,法国隔C[n+m][m] 大量的组合,以取mod使用Lucas定理: Lucas(n,m,p) = C[n%p][m%p] × Lucas(n/p,m/ ...

随机推荐

  1. 【codevs1404】字符串匹配 KMP

    题目描述 给你两个串A,B,可以得到从A的任意位开始的子串和B匹配的长度.给定K个询问,对于每个询问给定一个x,求出匹配长度恰为x的位置有多少个.N,M,K<=200000 输入 第一行三个数 ...

  2. Codeforces Round #510 Div. 2 Virtual Participate记

    这场打的顺手到不敢相信.如果不是vp的话估计肯定打不到这个成绩. A:最大显然,最小的话每次暴力给最小的+1. #include<iostream> #include<cstdio& ...

  3. 【刷题】洛谷 P3804 【模板】后缀自动机

    题目描述 给定一个只包含小写字母的字符串 \(S\) , 请你求出 \(S\) 的所有出现次数不为 \(1\) 的子串的出现次数乘上该子串长度的最大值. 输入输出格式 输入格式: 一行一个仅包含小写字 ...

  4. POJ2891:Strange Way to Express Integers——题解

    http://poj.org/problem?id=2891 题目大意: k个不同的正整数a1,a2,...,ak.对于一些非负m,满足除以每个ai(1≤i≤k)得到余数ri.求出最小的m. 输入和输 ...

  5. BZOJ4568:[SCOI2016]幸运数字——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4568 https://www.luogu.org/problemnew/show/P3292 A ...

  6. BZOJ3140:[HNOI2013]消毒——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3140 https://www.luogu.org/problemnew/show/P3231 最近在 ...

  7. [codeforces/edu4]总结(F)

    链接:http://codeforces.com/contest/612/ A题: 枚举切多少个p,看剩下的能否整除q. B题: 从1到n模拟一下,累加移动的距离. C题: 先用括号匹配的思路看是否有 ...

  8. [技巧篇]03.关于MyBatis的简单批量处理

  9. Hibernate入门(3)- 持久对象的生命周期介绍

    在hibernate中对象有三种状态:瞬时态(Transient). 持久态(Persistent).脱管态或游离态(Detached).处于持久态的对象也称为PO(Persistence Objec ...

  10. [洛谷P3242] [HNOI2015]接水果

    洛谷题目链接:[HNOI2015]接水果 题目描述 风见幽香非常喜欢玩一个叫做 osu!的游戏,其中她最喜欢玩的模式就是接水果.由于她已经DT FC 了The big black, 她觉得这个游戏太简 ...