class numpy.random.RandomState(seed=None)
  RandomState 是一个基于Mersenne Twister算法的伪随机数生成类
  RandomState 包含很多生成 概率分布的伪随机数 的方法。

  如果指定seed值,那么每次生成的随机数都是一样的。即对于某一个伪随机数发生器,只要该种子相同,产生的随机数序列就是相同的。

numpy.random.RandomState.rand(d0, d1, ..., dn)
  Random values in a given shape.
  Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).
  rand()函数产生 [0,1)间的均匀分布的指定维度的 伪随机数
  Parameters:
    d0, d1, …, dn : int, optional
      The dimensions of the returned array, should all be positive. If no argument is given a single Python float is returned.

  Returns:
    out : ndarray, shape (d0, d1, ..., dn)
      Random values.

numpy.random.RandomState.uniform(low=0.0, high=1.0, size=None)
  Draw samples from a uniform distribution.
  Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by uniform.
  uniform()函数产生 [low,high)间的 均匀分布的指定维度的 伪随机数
  Parameters:
  low : float or array_like of floats, optional
    Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0.
  high : float or array_like of floats
    Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0.
  size : int or tuple of ints, optional
    Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn.
    If size is None (default), a single value is returned if low and high are both scalars. Otherwise, np.broadcast(low, high).size samples are drawn.

  Returns:
    out : ndarray or scalar
      Drawn samples from the parameterized uniform distribution.

有时候我们需要自己模拟构造 输入数据(矩阵),那么这种随机数的生成是一种很好的方式。

 # -*- coding: utf-8 -*-
"""
Created on Tue May 29 12:14:11 2018 @author: Frank
""" import numpy as np #基于seed产生随机数
rng = np.random.RandomState(seed)
print(type(rng)) #生成[0,1)间的 32行2列矩阵
X=rng.rand(32, 2)
print("X.type{}".format(type(X)))
print(X) #生成[0,1)间的 一个随机数
a1 = rng.rand()
print("a1.type{}".format(type(a1)))
print(a1) #生成[0,1)间的 一个包含两个元素的随机数组
a2 = rng.rand(2)
print("a2.type{}".format(type(a2)))
print(a2) #生成[1,2)间的随机浮点数
X1 = rng.uniform(1,2)
print("X1.type{}".format(type(X1)))
print(X1) #生成[1,2)间的随机数,一维数组且仅含1个数
X2 = rng.uniform(1,2,1)
print("X2.type{}".format(type(X2)))
print(X2) #生成[1,2)间的随机数,一维数组且仅含2个数
X3 = rng.uniform(1,2,2)
print("X3.type{}".format(type(X3)))
print(X3) #生成[1,2)间的随机数,2行3列矩阵
X4 = rng.uniform(1,2,(2,3))
print("X4.type{}".format(type(X4)))
print(X4)

基于numpy的随机数构造的更多相关文章

  1. 使用numpy产生随机数

    numpy中的random模块包含了很多方法可以用来产生随机数,这篇文章将对random中的一些常用方法做一个总结. 1.numpy.random.rand(d0, d1, ..., dn) 作用:产 ...

  2. 一种基于 Numpy 的 TF-IDF 实现报告

    一种基于 Numpy 的 TF-IDF 实现报告 摘要 本文使用了一种 state-of-the-art 的矩阵表示方法来计算每个词在每篇文章上的 TF-IDF 权重(特征).本文还将介绍基于 TF- ...

  3. kbmMW安全第#3 - 基于硬件的随机数#2

    在之前的基于硬件的随机数博文中,我介绍了如何使用基于外部硬件的随机数生成器,来生成高质量的随机数. 但是,后来英特尔和AMD的CPU也包含随机值生成器.从2015年6月开始,来自Ivy Bridge的 ...

  4. kbmMW基于硬件生成随机数

    按作者的说法,Delphi提供的生成随机数不是真正随机的,因为他是根据种子计算的,即种子+算法生成的随机数,如果被人知道原始种子值和算法的调用次数,则可以重现随机数,因此在安全领域,这是不安全的.同时 ...

  5. 科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数)

    Mlab了解 Mlab是Mayavi提供的面向脚本的api,他可以实现快速的三维可视化,Mayavi可以通过Mlab的绘图函数对Numpy数组建立可视化. 过程为: .建立数据源 .使用Filter( ...

  6. [开发技巧]·Python极简实现滑动平均滤波(基于Numpy.convolve)

    [开发技巧]·Python极简实现滑动平均滤波(基于Numpy.convolve) ​ 1.滑动平均概念 滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ...

  7. 基于Numpy的神经网络+手写数字识别

    基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class ...

  8. 深度学习基础-基于Numpy的卷积神经网络(CNN)实现

    本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN) ...

  9. 深度学习基础-基于Numpy的感知机Perception构建和训练

    1. 感知机模型   感知机Perception是一个线性的分类器,其只适用于线性可分的数据.          f(x) = sign(w.x + b) 其试图在所有线性可分超平面构成的假设空间中找 ...

随机推荐

  1. ALCHEMY 2 (FLASCC)新手入门 (WINDOWS 版)

    Adobe Alchemy(炼金术) 2的预发布版本已经对开发者开放,并且已经更名为 FlasCC.炼金术简单来说就是把c/c 代码编译成swf文件,它吸收了c/c 高效的执行效率,比传统开发的swf ...

  2. 《Go语言实战》笔记之协程同步 sync.WaitGroup

    原文地址(欢迎互换友链): http://www.niu12.com/article/8 sync 包提供同步 goroutine 的功能 <p>文档介绍</p><cod ...

  3. Wishbone接口通用RAM

    /* ************************************************************************************************ ...

  4. pyspider介绍及安装

    一.pyspider简介 1.通过python脚本进行结构化信息的提取,follow链接调度抓取控制,实现最大的灵活性 2.通过web化的脚本编写.调试环境.web展现调度状态 3.抓取环模型成熟稳定 ...

  5. windows 服务器不能使用剪贴板解决办法

    您可以在系统资源中先结束rdpclip.exe进程,然后重新打开c:\windows\system32\rdpclip.exe即可

  6. mr程序无法输出日志进行调试的解决方法

    mr程序无法输出日志进行调试的解决方法 @(Hadoop) yarn开启日志输出设置 在yarn-site.xml文件中添加如下配置: <property> <name>yar ...

  7. 批量修改mp3文件的title等

    批量修改mp3文件的title等 不是改文件名哦: 下载地址:https://mp3tag.en.softonic.com/ 帮助文档:file:///C:/Program%20Files%20(x8 ...

  8. ckeditor 前段js配置toolbar以及取值(实用)

    <%@ page contentType="text/html;charset=UTF-8"%><%@ include file="/WEB-INF/v ...

  9. 在笛卡尔坐标系上描绘y=x^2-4/x^2-2x-3曲线

    <!DOCTYPE html> <html lang="utf-8"> <meta http-equiv="Content-Type&quo ...

  10. 十大迷你iPhone天气应用

    来源:GBin1.com 天气特别是指大气情况这样的状态通常包括温度,风,云,湿度和降雨等.上述情况下的天气状况很大程度影响了我们的生活和每天的日常活动.天气可能会经常出乎意料,所以往往希望能够准确提 ...