传送门\

Description

某加工厂有\(A\)、\(B\)两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成。由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工,所完成任务又会不同。某一天,加工厂接到n个产品加工的任务,每个任务的工作量不尽一样。

你的任务就是:已知每个任务在\(A\)机器上加工所需的时间\(t_1\),\(B\)机器上加工所需的时间\(t_2\)及由两台机器共同加工所需的时间\(t_3\),请你合理安排任务的调度顺序,使完成所有\(n\)个任务的总时间最少。

Input

第\(1\)行为\(n\)。\(n\)是任务总数

第\(i+1\)行为\(3\)个\([0,5]\)之间的非负整数\(t_1,t_2,t_3\),分别表示第\(i\)个任务在\(A\)机器上加工、\(B\)机器上加工、两台机器共同加工所需要的时间。如果所给的时间\(t_1\)或\(t_2\)为\(0\)表示任务不能在该台机器上加工,如果\(t_3\)为\(0\)表示任务不能同时由两台机器加工。

Output

最少完成时间

Sample Input

5
2 1 0
0 5 0
2 4 1
0 0 3
2 1 1

Sample Output

9

Hint

\(1~\leq~n~\leq~6000\)

Solution

看过去这确实是个DP,但是状态难以设计。因为共有两个时间,无法将他们体现到一个最优值上去。但是考虑最大的用时是3e4,所以其中一个用时是可以枚举的,所以可以把用时放到状态中:由此可以设计出状态:

设\(f_{i,j}\)为前i个任务,\(A\)机器花费\(j\)时间的\(B\)最小花费时间。方程显然:

\(f_{i,j}=min\){\(f_{i-1,j-a},f_{i-1,j}+b,f_{i-1,j-c}+c\)}

这样卡一卡常就过了(

Code

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[90];
} template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
} template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template<typename T>
inline T mmax(const T a,const T b) {return a>b?a:b;}
template<typename T>
inline T mmin(const T a,const T b) {return a<b?a:b;}
template<typename T>
inline T mabs(const T a) {return a<0?-a:a;} template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
} const int maxn = 6010;
const int maxm = 30010; int frog[maxm]; int main() {
rg int n=0;qr(n);
rg int a,b,c;
for(rg int i=1;i<=n;++i) {
a=b=c=0;qr(a);qr(b);qr(c);
if(!a) a=maxm;if(!b) b=maxm;if(!c) c=maxm;
for(rg int j=30000;~j;--j) {
frog[j]+=b;
if(j >= a) frog[j]=mmin(frog[j],frog[j-a]);
if(j >= c) frog[j]=mmin(frog[j],frog[j-c]+c);
}
}
rg int ans=0x3f3f3f3f;
for(rg int i=0;i<30001;++i) {
ans=mmin(ans,mmax(frog[i],i));
}
write(ans,'\n',true);
return 0;
}

Summary

当一个状态的最优值包括\(n\)个参数时,可以将\(n-1\)个参数放到状态中,每次转移为其他参数为该状态时,剩下参数的最值。最后枚举参数求得答案。

【DP】【P2224】】【HNOI2001】产品加工的更多相关文章

  1. 洛谷 P2224 [HNOI2001]产品加工 解题报告

    P2224 [HNOI2001]产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需 ...

  2. 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]

    题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...

  3. bzoj 1222: [HNOI2001]产品加工 dp

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 381  Solved: 218[Submit][Status ...

  4. 【BZOJ1222】[HNOI2001]产品加工 DP

    [BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...

  5. Bzoj 1222: [HNOI2001]产品加工 动态规划

    1222: [HNOI2001]产品加工 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 486  Solved: 298[Submit][Status ...

  6. BZOJ1222[HNOI2001]产品加工——DP

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  7. 【bzoj1222】[HNOI2001]产品加工 背包dp

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  8. 【BZOJ 1222】 [HNOI2001] 产品加工(DP)

    Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机 ...

  9. BZOJ1222: [HNOI2001]产品加工(诡异背包dp)

    Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 907  Solved: 587[Submit][Status][Discuss] Descriptio ...

  10. bzoj1222: [HNOI2001]产品加工--DP

    DP神题orz dp[i]表示机器1工作i小时,机器2工作dp[i]小时 那么对于每个任务: 选1:dp[i]=dp[i-a]; 选2:dp[i]=dp[i]+b; 选1+2:dp[i]=dp[i-c ...

随机推荐

  1. Django学习总结-之-URLS反向解析

    2018-09-15  09:58:49 在CSDN博客审核效率提高之前, 又要在此处向各位唠叨了~ URL 与 URI URL : 统一资源定位符 相当于绝对路径 URI : 统一资源标志符 相当于 ...

  2. 【cookie接口】- jmeter - (请求提示no cookie)

    1.虽然 请求成功 响应码 200  ,但是  返回code 1  ,表示接口不成功 2.加入 空的cookie 管理器就可以了  返回 code 0 注意:状态码 200 只是表示请求是成功的 , ...

  3. 数据库Mysql的学习(八)-储存过程和事务和导入导出

    储存过程 DELIMITER // CREATE PROCEDURE pro1() BEGIN SELECT book_id,book_name,category FROM bookinfo t1 J ...

  4. Java经典问题

    1.JAVA初学者都应该搞懂的问题 对于这个系列里的问题,每个学Java的人都应该搞懂.当然,如果只是学Java玩玩就无所谓了.如果你认为自己已经超越初学者了,却不很懂这些问题,请将你自己重归初学者行 ...

  5. nodejs基础学习

    一:复制官网的代码,建立一个简单的服务器 const http = require('http'); const hostname = '127.0.0.1'; const port = 3000; ...

  6. lintcode-196-寻找缺失的数

    196-寻找缺失的数 给出一个包含 0 .. N 中 N 个数的序列,找出0 .. N 中没有出现在序列中的那个数. 样例 N = 4 且序列为 [0, 1, 3] 时,缺失的数为2. 挑战 在数组上 ...

  7. TCP系列06—连接管理—5、TCP fastopen(TFO)

    一.TFO背景 当前web和web-like应用中一般都是在三次握手后开始数据传输,相比于UDP,多了一个RTT的时延,即使当前很多应用使用长连接来处理这种情况,但是仍然由一定比例的短连接,这额外多出 ...

  8. 移动端调试和fiddler移动端抓包使用

    这里介绍一款移动端的调试工具以及抓包工具fiddler的使用.也是初次接触,算是初次接触的总结. 1,移动端调试工具.手机截图如下 代码实现 <!DOCTYPE html> <htm ...

  9. idea快捷键操作

    在编写代码的时候直接输入psv就会看到一个psvm的提示,此时点击tab键一个main方法就写好了. psvm 也就是public static void main的首字母. 依次还有在方法体内键入f ...

  10. 【Linux】- ps -ef |grep 命令

    ps:将某个进程显示出来 grep:查找 |:管道命令 表示ps命令与grep同时执行 PS是LINUX下最常用的也是非常强大的进程查看命令 grep命令是查找,是一种强大的文本搜索工具,它能使用正则 ...