P1527 [国家集训队]矩阵乘法

题目描述

给你一个\(N*N\)的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第\(K\)小数。

输入输出格式

输入格式:

第一行两个数\(N,Q\),表示矩阵大小和询问组数;

接下来\(N\)行\(N\)列一共\(N*N\)个数,表示这个矩阵;

再接下来\(Q\)行每行\(5\)个数描述一个询问:\(x1,y1,x2,y2,k\)表示找到以\((x1,y1)\)为左上角、以\((x2,y2)\)为右下角的子矩形中的第\(K\)小数。

输出格式:

对于每组询问输出第\(K\)小的数。

说明

矩阵中数字是\(10^9\)以内的非负整数;

\(20\%\)的数据:\(N<=100,Q<=1000\);

\(40\%\)的数据:\(N<=300,Q<=10000\);

\(60\%\)的数据:\(N<=400,Q<=30000\);

\(100\%\)的数据:\(N<=500,Q<=60000\)。


整体二分真有趣。

直接把整体二分里面的改成二维树状数组就可以了

复杂度\(O((N^2+M)\log10^9\log N^2)\)


Code:

#include <cstdio>
const int N=502;
const int M=310010;
const int inf=0x3f3f3f3f;
struct node{int op,a,b,c,d,k;}q[M],ql[M],qr[M];
int s[N][N],n,m,Q,ans[M];
void add(int x,int y,int d)
{
for(int i=x;i<=n;i+=i&-i)
for(int j=y;j<=n;j+=j&-j)
s[i][j]+=d;
}
int query(int x,int y)
{
int sum=0;
for(int i=x;i;i-=i&-i)
for(int j=y;j;j-=j&-j)
sum+=s[i][j];
return sum;
}
#define rep(i,a,b) for(int i=a;i<=b;i++)
void divide(int l,int r,int s,int t)
{
if(s>t)return;
if(l==r){rep(i,s,t)ans[q[i].op]=l;return;}
int mid=l+r>>1,lp=0,rp=0;
rep(i,s,t)
{
if(q[i].op)
{
int p=query(q[i].c,q[i].d)-query(q[i].c,q[i].b-1)
-query(q[i].a-1,q[i].d)+query(q[i].a-1,q[i].b-1);
if(q[i].k<=p) ql[++lp]=q[i];
else qr[++rp]=q[i],qr[rp].k-=p;
}
else
{
if(q[i].k<=mid) add(q[i].a,q[i].b,1),ql[++lp]=q[i];
else qr[++rp]=q[i];
}
}
rep(i,s,t) if(!q[i].op&&q[i].k<=mid) add(q[i].a,q[i].b,-1);
rep(i,s,s+lp-1) q[i]=ql[i+1-s];
rep(i,s+lp,t) q[i]=qr[i+1-s-lp];
divide(l,mid,s,s+lp-1),divide(mid+1,r,s+lp,t);
}
int main()
{
scanf("%d%d",&n,&Q);
rep(i,1,n) rep(j,1,n) ++m,scanf("%d",&q[m].k),q[m].a=i,q[m].b=j;
rep(i,1,Q) ++m,scanf("%d%d%d%d%d",&q[m].a,&q[m].b,&q[m].c,&q[m].d,&q[m].k),q[m].op=i;
divide(0,inf,1,m);
rep(i,1,Q) printf("%d\n",ans[i]);
return 0;
}

2018.11.1

洛谷 P1527 [国家集训队]矩阵乘法 解题报告的更多相关文章

  1. [洛谷P1527] [国家集训队]矩阵乘法

    洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...

  2. 洛谷P1527 [国家集训队] 矩阵乘法 [整体二分,二维树状数组]

    题目传送门 矩阵乘法 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入格式: 第一行两个数N,Q,表示矩阵大小和询问组数: 接下来N行N列一共N* ...

  3. 洛谷$P1527$ [国家集训队]矩阵乘法 整体二分

    正解:整体二分 解题报告: 传送门$QwQ$ 阿看到这种查询若干次第$k$小显然就想到整体二分$QwQ$? 然后现在就只要考虑怎么快速求出一个矩形内所有小于某个数的数的个数? 开始我的想法是离散化然后 ...

  4. 洛谷 P1852 [国家集训队]跳跳棋 解题报告

    P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...

  5. 洛谷 P1501 [国家集训队]Tree II 解题报告

    P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...

  6. 洛谷 P1407 [国家集训队]稳定婚姻 解题报告

    P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

  7. 洛谷 P2757 [国家集训队]等差子序列 解题报告

    P2757 [国家集训队]等差子序列 题目描述 给一个\(1\)到\(N\)的排列\(\{A_i\}\),询问是否存在 \[1 \le p_1<p_2<p_3<p_4<p_5& ...

  8. 洛谷 P1903 [国家集训队]数颜色 解题报告

    P1903 [国家集训队]数颜色 题目描述 墨墨购买了一套\(N\)支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1.Q L R代表询问你从第\(L\) ...

  9. P1527 [国家集训队]矩阵乘法

    \(\color{#0066ff}{ 题目描述 }\) 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. \(\color{#0066ff}{输入格式}\) 第一行两个数N,Q ...

随机推荐

  1. android学习十 ActionBar

    1.api level大于等于11 支持,或者使用兼容库,但兼容库的问题很多. 2.一个操作栏属于一个活动,并具有其生命周期 3.操作栏分3类:a.选项卡操作栏,b.列表操作栏,c.标准操作栏 4.获 ...

  2. lunix安装

    https://www.cnblogs.com/wcwen1990/p/7630545.html

  3. Qt-事件处理-鼠标事件

    根据书中的内容,简单的实现鼠标相关的内容 源代码如下 .h #ifndef MOUSEEVENT_H #define MOUSEEVENT_H #include <QMainWindow> ...

  4. 180619-Yaml文件语法及读写小结

    Yaml文件小结 Yaml文件有自己独立的语法,常用作配置文件使用,相比较于xml和json而言,减少很多不必要的标签或者括号,阅读也更加清晰简单:本篇主要介绍下YAML文件的基本语法,以及如何在Ja ...

  5. selenium--driver.switchTo()

    在自动化测试中,会遇到多窗口.多iframe.多alert的情况.此时,会使用driver.switchTo()来解决. 下面时关于driver.switchTo()的详细介绍: 1.多windows ...

  6. lesson 14 A noble gangster

    lesson 14 A noble gangster there was a ++time++ 时期 times 时期/年代 in times of peace a sum of + money 一笔 ...

  7. 关于axios跨域带cookie

    axios  设置 withCredentials :true $u = $_SERVER['HTTP_REFERER'];$u = preg_replace('#/$#', '', $u);head ...

  8. centos端口管理

    centos 6.5 ###############配置filter表防火墙############### #清除预设表filter中的所有规则链的规则iptables -F #清除预设表filter ...

  9. 贪心算法——Huffman 压缩编码的实现

    1. 如何理解 "贪心算法" 假设我们有一个可以容纳 100 Kg 物品的背包,可以装各种物品.我们有以下 5 种豆子,每种豆子的总量和总价值都各不相同.怎样装才能让背包里豆子的总 ...

  10. Python3 Tkinter-Canvas

    1.创建 from tkinter import * root=Tk() cv=Canvas(root,bg='black') cv.pack() root.mainloop() 2.创建item f ...