1、ADC简介

STM32 拥有 1~3 个 ADC(STM32F101/102 系列只有 1 个 ADC)STM32F103至少拥有2个ADC,STM32F103ZE包含3个ADC,这些 ADC 可以独立使用,也可以使用双重模式(提高采样率)。STM32 的 ADC 是 12 位逐次逼近型的模拟数字转换器。它有 18 个通道,可测量 16 个外部和 2 个内部信号源。各通道的 A/D 转换可以单次、连续、扫描或间断模式执行。ADC 的结果可以左对齐或右对齐方式(12位)存储在 16 位数据寄存器中。模拟看门狗特性允许应用程序检测输入电压是否超出用户定义的高/低阀值。

STM32的ADC最大转换率为1HZ,也就是转换时间为 1us(在 ADCCLK=14M,采样周期为 1.5 个 ADC 时钟下得到),不要让 ADC 的时钟超过 14M,否则将导致结果准确度下降。否则将导致结果准确度下降。

STM32 将 ADC 的转换分为 2 个通道组:规则通道组和注入通道组。规则通道相当于你正常运行的程序,而注入通道呢,就相当于中断。在你程序正常执行的时候,中断是可以打断你的执行的。同这个类似,注入通道的转换可以打断规则通道的转换, 在注入通道被转换完成之后,规则通道才得以继续转换。

STM32 的单次转换模式下的相关设置,使用库函数的函数来设定使用 ADC1 的通道 1 进行 AD 转换。这里需要说明一下,使用到的库函数分布在 stm32f10x_adc.c 文件和 stm32f10x_adc.h 文件中。其详细设置步骤:

1.1 开启 PA 口时钟和 ADC1 时钟,设置 PA1 为模拟输入

STM32F103ZET6 的 ADC 通道 1 在 PA1 上,所以,我们先要使能 PORTA 的时钟和 ADC1时钟,然后设置 PA1 为模拟输入。使能 GPIOA 和 ADC 时钟用 RCC_APB2PeriphClockCmd 函数,设置 PA1 的输入方式,使用 GPIO_Init 函数即可。

1.2 复位 ADC1,同时设置 ADC1 分频因子

开启 ADC1 时钟之后,我们要复位 ADC1, 将 ADC1  的全部寄存器重设为缺省值之后我们就可以通过 RCC_CFGR 设置 ADC1 的分频因子。分频因子要确保 ADC1 的时钟(ADCCLK)不要超过 14Mhz。  这个我们设置分频因子位 6,时钟为 72/6=12MHz,库函数的实现方法是:

RCC_ADCCLKConfig(RCC_PCLK2_Div6);

 ADC 时钟复位的方法是:

ADC_DeInit(ADC1);
1.3 初始化 ADC1 参数,设置 ADC1 的工作模式以及规则序列的相关信息  

在设置完分频因子之后,我们就可以开始 ADC1 的模式配置了,设置单次转换模式、触发方式选择、数据对齐方式等都在这一步实现。同时,我们还要设置 ADC1 规则序列的相关信息,我们这里只有一个通道,并且是单次转换的,所以设置规则序列中通道数为 1。这些在库函数中是通过函数 ADC_Init 实现的,下面我们看看其定义:

void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct);

  从函数定义可以看出,第一个参数是指定 ADC 号。这里我们来看看第二个参数,跟其他外设初始化一样,同样是通过设置结构体成员变量的值来设定参数。

typedef struct
{
uint32_t ADC_Mode; //设置 ADC 的模式 独立模式,注入同步模式
FunctionalState ADC_ScanConvMode; //设置是否开启扫描模式
FunctionalState ADC_ContinuousConvMode; //设置是否开启连续转换模式
uint32_t ADC_ExternalTrigConv; //设置启动规则转换组转换的外部事件
uint32_t ADC_DataAlign; //设置 ADC 数据对齐方式是左对齐还是右对齐
uint8_t ADC_NbrOfChannel; //设置规则序列的长度
}ADC_InitTypeDef;
初始化范例:
  ADC_InitTypeDef ADC_InitStructure;
  ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC 工作模式:独立模式
  ADC_InitStructure.ADC_ScanConvMode = DISABLE; //AD 单通道模式
  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //AD 单次转换模式
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;   //转换由软件而不是外部触发启动
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC 数据右对齐
  ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的 ADC 通道的数目 1
ADC_Init(ADC1, &ADC_InitStructure); //根据指定的参数初始化外设 ADCx
1.4 使能 ADC 并校准  

在设置完了以上信息后,我们就使能 AD 转换器,执行复位校准和 AD 校准,注意这两步是必须的!不校准将导致结果很不准确。

使能指定的 ADC 的方法是:

ADC_Cmd(ADC1, ENABLE);  //使能指定的 ADC1

  执行复位校准的方法是:

ADC_ResetCalibration(ADC1);

  执行 ADC 校准的方法是:

ADC_StartCalibration(ADC1);    //开始指定 ADC1 的校准状态

  记住,每次进行校准之后要等待校准结束。 这里是通过获取校准状态来判断是否校准是否结束。下面我们一一列出复位校准和 AD 校准的等待结束方法:

while(ADC_GetResetCalibrationStatus(ADC1));  //等待复位校准结束
while(ADC_GetCalibrationStatus(ADC1)); //等待校 AD 准结束
1.5 读取 ADC 值

在上面的校准完成之后, ADC 就算准备好了。接下来我们要做的就是设置规则序列 1 里面的通道,采样顺序,以及通道的采样周期,然后启动 ADC 转换。在转换结束后,读取 ADC 转换结果值就是了。这里设置规则序列通道以及采样周期的函数是:

void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel,uint8_t Rank, uint8_t ADC_SampleTime);

  我们这里是规则序列中的第 1 个转换,同时采样周期为 239.5,所以设置为:

ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 );

  软件开启 ADC 转换的方法是:

ADC_SoftwareStartConvCmd(ADC1, ENABLE);//使能指定的 ADC1 的软件转换

  启动功能开启转换之后,就可以获取转换 ADC 转换结果数据,方法是:

ADC_GetConversionValue(ADC1);

  同时在 AD 转换中,我们还要根据状态寄存器的标志位来获取 AD 转换的各个状态信息。库函数获取 AD 转换的状态信息的函数是:

FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)

  比如我们要判断 ADC1 的转换是否结束,方法是:

while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束
1.6 通过以上几个步骤的设置,我们就能正常的使用 STM32 的 ADC1 来执行 AD 转换操作
/** 初始化ADC
* 这里我们仅以规则通道为例
* 我们默认将开启通道0~3
*/
void Adc_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
ADC_InitTypeDef ADC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1 , ENABLE ); //使能ADC1通道时钟
RCC_ADCCLKConfig(RCC_PCLK2_Div6); //设置ADC分频因子6 72M/6=12,ADC最大时间不能超过14M //PA1 作为模拟通道输入引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚
GPIO_Init(GPIOA, &GPIO_InitStructure); ADC_DeInit(ADC1); //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在单次转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目
ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1
ADC_ResetCalibration(ADC1); //使能复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束 ADC_StartCalibration(ADC1); //开启AD校准 while(ADC_GetCalibrationStatus(ADC1)); //等待校准结束 }


//获得ADC值
//ch:通道值 0~3
u16 Get_Adc(u8 ch)
{
//设置指定ADC的规则组通道,一个序列,采样时间
ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 ); //ADC1,ADC通道,采样时间为239.5周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的ADC1的软件转换启动功能 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束 return ADC_GetConversionValue(ADC1); //返回最近一次ADC1规则组的转换结果
}

u16 Get_Adc_Average(u8 ch,u8 times)
{
u32 temp_val=0;
u8 t;
for(t=0;t<times;t++)
{
temp_val+=Get_Adc(ch);
delay_ms(5);
}
return temp_val/times;
} 

补充 (STM32的内部温度传感器):

STM32 有一个内部的温度传感器,可以用来测量 CPU 及周围的温度(TA)。该温度传感器在内部和 ADCx_IN16 输入通道相连接,此通道把传感器输出的电压转换成数字值。温度传感器模拟输入推荐采样时间是 17.1μs。STM32 的内部温度传感器支持的温度范围为:-40~125度。精度比较差,为±1.5℃左右。

STM32 内部温度传感器的使用很简单,只要设置一下内部 ADC,并激活其内部通道就差不多了 。

STM32 内部温度传感器使用的步骤了,如下:

(1)设置 ADC,开启内部温度传感器。

ADC_TempSensorVrefintCmd(ENABLE); //开启内部温度传感器功能:

  (2)读取通道 16 的 AD 值,计算结果。

在设置完之后,我们就可以读取温度传感器的电压值了

//初始化ADC
//这里我们仅以规则通道为例
//我们默认将开启通道0~3
void T_Adc_Init(void) //ADC通道初始化
{
ADC_InitTypeDef ADC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1 , ENABLE ); //使能GPIOA,ADC1通道时钟 RCC_ADCCLKConfig(RCC_PCLK2_Div6); //分频因子6时钟为72M/6=12MHz ADC_DeInit(ADC1); //将外设 ADC1 的全部寄存器重设为缺省值 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在单次转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目
ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 ADC_TempSensorVrefintCmd(ENABLE); //开启内部温度传感器 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1 ADC_ResetCalibration(ADC1); //重置指定的ADC1的复位寄存器 while(ADC_GetResetCalibrationStatus(ADC1)); //获取ADC1重置校准寄存器的状态,设置状态则等待 ADC_StartCalibration(ADC1); // while(ADC_GetCalibrationStatus(ADC1)); //获取指定ADC1的校准程序,设置状态则等待
}
u16 T_Get_Adc(u8 ch)
{ ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5 ); //ADC1,ADC通道3,第一个转换,采样时间为239.5周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的ADC1的软件转换启动功能
while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束
return ADC_GetConversionValue(ADC1); //返回最近一次ADC1规则组的转换结果
} //得到ADC采样内部温度传感器的值
//取10次,然后平均
u16 T_Get_Temp(void)
{
u16 temp_val=0;
u8 t;
for(t=0;t<10;t++)
{
temp_val+=T_Get_Adc(ADC_Channel_16); //TampSensor
delay_ms(5);
}
return temp_val/10;
} //获取通道ch的转换值
//取times次,然后平均
u16 T_Get_Adc_Average(u8 ch,u8 times)
{
u32 temp_val=0;
u8 t;
for(t=0;t<times;t++)
{
temp_val+=T_Get_Adc(ch);
delay_ms(5);
}
return temp_val/times;
}

2、DAC简介

STM32 的 DAC 模块(数字/模拟转换模块)是 12 位数字输入,电压输出型的DAC。DAC 可以配置为 8 位或 12 位模式,也可以与 DMA 控制器配合使用。DAC工作在 12 位模式时,数据可以设置成左对齐或右对齐。DAC 模块有 2 个输出通道,每个通道都有单独的转换器。在双DAC 模式下,2 个通道可以独立地进行转换,也可以同时进行转换并同步地更新 2 个通道的输出。DAC 可以通过引脚输入参考电压 VREF+以获得更精确的转换结果。

TM32 的 DAC 模块主要特点有:

①  2 个 DAC 转换器:每个转换器对应 1 个输出通道

②  8 位或者 12 位单调输出

③  12 位模式下数据左对齐或者右对齐

④  同步更新功能

⑤  噪声波形生成

⑥  三角波形生成

⑦  双 DAC 通道同时或者分别转换

⑧  每个通道都有 DMA 功能

使用库函数的方法来设置 DAC 模块的通道 1 来输出模拟电压,其详细设置步骤如下:

2.1 开启 PA 口时钟,设置 PA4 为模拟输入。

STM32F103ZET6 的 DAC 通道 1 在 PA4 上,所以,我们先要使能 PORTA 的时钟,然后设置 PA4 为模拟输入。DAC 本身是输出,但是为什么端口要设置为模拟输入模式呢?因为一旦使能 DACx 通道之后,相应的 GPIO 引脚(PA4 或者 PA5)会自动与 DAC 的模拟输出相连,设置为输入,是为了避免额外的干扰。

使能 GPIOA 时钟:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );    //使能 PORTA 时钟

  设置 PA1 为模拟输入只需要设置初始化参数即可:

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;        //模拟输入
2.2 使能 DAC1 时钟

同其他外设一样,要想使用,必须先开启相应的时钟。 STM32 的 DAC 模块时钟是由 APB1提供的,所以我们调用函数 RCC_APB1PeriphClockCmd()设置 DAC 模块的时钟使能。

RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE );    //使能 DAC 通道时钟
3.3 初始化 DAC,设置 DAC 的工作模式  

该部分设置全部通过 DAC_CR 设置实现,包括:DAC 通道 1 使能、DAC 通道 1 输出缓存关闭、不使用触发、不使用波形发生器等设置。这里 DMA  初始化是通过函数 DAC_Init 完成的:

void DAC_Init(uint32_t DAC_Channel, DAC_InitTypeDef* DAC_InitStruct)

参数设置结构体类型 DAC_InitTypeDef 的定义:  

typedef struct
{
uint32_t DAC_Trigger; //设置是否使用触发功能
uint32_t DAC_WaveGeneration; //设置是否使用波形发生
uint32_t DAC_LFSRUnmask_TriangleAmplitude; //设置屏蔽/幅值选择器,这个变量只在使用波形发生器的时候才有用
uint32_t DAC_OutputBuffer; //设置输出缓存控制位
}DAC_InitTypeDef;

  实例代码:

DAC_InitTypeDef DAC_InitType;
DAC_InitType.DAC_Trigger = DAC_Trigger_None; //不使用触发功能 TEN1=0
DAC_InitType.DAC_WaveGeneration = DAC_WaveGeneration_None;//不使用波形发生
DAC_InitType.DAC_LFSRUnmask_TriangleAmplitude = DAC_LFSRUnmask_Bit0;
DAC_InitType.DAC_OutputBuffer = DAC_OutputBuffer_Disable ; //DAC1 输出缓存关闭
DAC_Init(DAC_Channel_1,&DAC_InitType); //初始化 DAC 通道 1
2.4 使能 DAC 转换通道  

初始化 DAC 之后,理所当然要使能 DAC 转换通道,库函数方法是:

DAC_Cmd(DAC_Channel_1, ENABLE);   //使能 DAC1
2.5 设置 DAC 的输出值 

通过前面 4 个步骤的设置,DAC 就可以开始工作了,我们使用 12 位右对齐数据格式,所以我们通过设置 DHR12R1,就可以在 DAC 输出引脚(PA4)得到不同的电压值了。库函数的函数是:

DAC_SetChannel1Data(DAC_Align_12b_R, 0);      //左对齐

    第一个参数设置对齐方式,可以为 12 位右对齐 DAC_Align_12b_R,12 位左对齐DAC_Align_12b_L 以及 8 位右对齐 DAC_Align_8b_R 方式。

第二个参数就是 DAC 的输入值了,这个很好理解,初始化设置为 0。 

这里,还可以读出 DAC 的数值,函数是:

DAC_GetDataOutputValue(DAC_Channel_1);
//DAC通道1输出初始化
void Dac1_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
DAC_InitTypeDef DAC_InitType; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE ); //使能PORTA通道时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE ); //使能DAC通道时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; // 端口配置
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_SetBits(GPIOA,GPIO_Pin_4) ;//PA.4 输出高 DAC_InitType.DAC_Trigger=DAC_Trigger_None; //不使用触发功能 TEN1=0
DAC_InitType.DAC_WaveGeneration=DAC_WaveGeneration_None;//不使用波形发生
DAC_InitType.DAC_LFSRUnmask_TriangleAmplitude=DAC_LFSRUnmask_Bit0;//屏蔽、幅值设置
DAC_InitType.DAC_OutputBuffer=DAC_OutputBuffer_Disable ; //DAC1输出缓存关闭 BOFF1=1
DAC_Init(DAC_Channel_1,&DAC_InitType); //初始化DAC通道1 DAC_Cmd(DAC_Channel_1, ENABLE); //使能DAC1
DAC_SetChannel1Data(DAC_Align_12b_R, 0); //12位右对齐数据格式设置DAC值
} //设置通道1输出电压
//vol:0~3300,代表0~3.3V
void Dac1_Set_Vol(u16 vol)
{
float temp=vol;
temp/=1000;
temp=temp*4096/3.3;
DAC_SetChannel1Data(DAC_Align_12b_R,temp);//12位右对齐数据格式设置DAC值
}

  

SRM32(8)——ADC和DAC的更多相关文章

  1. DAC杂谈二 ——ADC和DAC常用技术术语

    采集时间 采集时间是从释放保持状态(由采样-保持输入电路执行)到采样电容电压稳定至新输入值的1 LSB范围之内所需要的时间.采集时间(Tacq)的公式如下: 混叠 根据采样定理,超过奈奎斯特频率的输入 ...

  2. 对ADC(DAC)的线性度(INL和DNL)的一点理解 [转]

    大家在使用ADC的时候,往往最关注位数,而对ADC的线性度往往会忽略. 其实这个线性度也是ADC非常重要的指标,ADC(或DAC,其实ADC也是由DAC组成的)线性度指标有两个: INL:翻译过来叫“ ...

  3. LPC1788的ADC和DAC使用

    #ifndef __ADC1_H_ #define __ADC1_H_ #include "common.h" #include "delay.h" void ...

  4. ADC and DAC Analog Filters for Data Conversion

    Figure 3-7 shows a block diagram of a DSP system, as the sampling theorem dictates it should be. Bef ...

  5. PWM实现ADC和DAC

    一.PWM实现AD 利用普通单片机的2个IO及一个运算放大器即可实现AD转换电路,而且很容易扩展成多通道.其占用资源少,成本低,AD 转换精度可以达到8位甚至更高,因此具有一定的实用价值. 1.1 硬 ...

  6. 【30集iCore3_ADP出厂源代码(ARM部分)讲解视频】30-4 底层驱动之ADC、DAC

    源视频包下载地址:链接:http://pan.baidu.com/s/1cL37gM 密码:ys1l 银杏科技优酷视频发布区:http://i.youku.com/gingko8

  7. 对于adc dac使用细节

    1. 要更具内部线路图决定引脚分配,adc和dac绑定在一个线路上,所以设计的时候最好尽量间隔三个引脚以上,如果adc必须放到一起,请使用开关控制,但是dma等可能不能正常工作. 2.dac输出内部缓 ...

  8. 嵌入式硬件之ADC/DAC

    嵌入式硬件之ADC/DAC 写在前面 这几天在做一个寒假练项目,其中涉及到了音频的处理,ADC.DAC再次进入到了我的视野,并引起了我新的思考. 1.初次相识 记得去年七月份,本科毕业刚离校,就到研究 ...

  9. STM32应用实例十五:STM32的ADC通道间干扰的问题

    最近我们在开发一个项目时,用到了MCU自带的ADC,在调试过程中发现通道之间村在相互干扰的问题.以前其实也用过好几次,但要求都不高所以没有太关注,此次因为物理量的量程较大,所以看到了变化. 首先来说明 ...

随机推荐

  1. yii2.0 Activeform表单部分组件使用方法 [ 2.0 版本 ]

    文本框:textInput(); 密码框:passwordInput(); 单选框:radio(),radioList(); 复选框:checkbox(),checkboxList(); 下拉框:dr ...

  2. docker中自定ingress网络

    在某些时候,docker自动生成的ingress网络会与服务器上已经存在的网络产生冲突,这个时候,你需要自定义ingress. 在自定义前,你需要删除所有有端口发布的服务. 使用命令docker ne ...

  3. Intellij IDEA 代码提示忽略大小写

    1.0 File >>Settings 2.0 Editor >> General >> Code Completion 如下图 选择 None

  4. BZOJ2882:工艺(SAM)

    Description 小敏和小燕是一对好朋友. 他们正在玩一种神奇的游戏,叫Minecraft. 他们现在要做一个由方块构成的长条工艺品.但是方块现在是乱的,而且由于机器的要求,他们只能做到把这个工 ...

  5. list使用方法

    转:https://www.cnblogs.com/epeter/p/5648026.html Java中对List集合的常用操作 目录: list中添加,获取,删除元素: list中是否包含某个元素 ...

  6. HDU 6395 Sequence 【矩阵快速幂 && 暴力】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others)   ...

  7. [19/03/27-星期三] 容器_Iterator(迭代器)之遍历容器元素(List/Set/Map)&Collections工具类

    一.概念 迭代器为我们提供了统一的遍历容器的方式 /* *迭代器遍历 * */ package cn.sxt.collection; import java.security.KeyStore.Ent ...

  8. es6之decorator

    //decorator //第三方库为:core-decorators //以下为代码实例 { //decorator //修饰器是一个函数 //是修改一个行为 //修改一个类的行为 console. ...

  9. 日期插件kalendae,遇到的一些问题

    1.日期中文显示 /*_months : 'January_February_March_April_May_June_July_August_September_October_November_D ...

  10. 解决FileUpload上传大文件报错

    <system.webServer> <security> <requestFiltering> <requestLimits maxAllowedConte ...