CF1025B Weakened Common Divisor【数论/GCD/思维】
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define mod 998244353
#define pi acos(-1.0)
#define rep(i,x,n) for(int i=(x); i<(n); i++)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 1<<30;
const int maxn = 150000+3;
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[2]={-1,1};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int t,n,m,d;
int cnt=0;
LL lcm(LL a, LL b)
{
return a/__gcd(a,b)*b;
}
LL cal(LL n)
{
for(int i=2;i*i<=n;i++)
if(n%i==0) return i;
return n;
}
LL a,b,x,y;
int main()
{
cin>>n>>a>>b;
for(int i=1;i<n;i++)
{
cin>>x>>y;
a=__gcd(x*y,a);
b=__gcd(x*y,b);
}
if(a!=1)
printf("%lld\n",cal(a));
else if(b!=1)
printf("%lld\n",cal(b));
else puts("-1");
}
/*
2
3 1
1 1 2
3 2
1 1 2
【题意】
给定n对数,求一个WCD,它满足至少能被每对数中的一个整除,若不存在,输出-1。
【类型】数论
【分析】一开始的思路是求每对数的最小公倍数,然后把这n个最小公倍数求个gcd,然后取其最小因子即可。但这样因为TLE而FST了。后来想想也是,如果每对数中的两个数互质,那么他们的最小公倍数就是1e18左右的大小,求其最小因子的时间复杂度差不多就是1e9,肯定会T。比如下面这组样例:
2
1999999973 1999999943
1999999973 1999999943
其实正解想法差不多,就把第一对中的第一个数和后面每对的乘积求一个gcd,第二个数也和后面的每对的乘积求一个gcd,这样就保证这两个数都是小于等于2e9的,求其最小因子的复杂度<1e5,可行。
PS:其实并不需要求每对数的最小公倍数,求其乘积即可,因为乘积包括了每对数那2个数中的所有因子,且乘积的最小因子一定能被每对数那2个数中的1个整除。
【时间复杂度&&优化】
【trick】
【数据】
CF1025B Weakened Common Divisor【数论/GCD/思维】的更多相关文章
- CF1025B Weakened Common Divisor 数学
Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...
- CF1025B Weakened Common Divisor
思路: 首先选取任意一对数(a, b),分别将a,b进行因子分解得到两个因子集合然后取并集(无需计算所有可能的因子,只需得到不同的质因子即可),之后再暴力一一枚举该集合中的元素是否满足条件. 时间复杂 ...
- CF1025B Weakened Common Divisor 题解
Content 定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个 ...
- codeforces#505--B Weakened Common Divisor
B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...
- upc组队赛17 Greatest Common Divisor【gcd+最小质因数】
Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...
- CF #505 B Weakened Common Divisor(数论)题解
题意:给你n组,每组两个数字,要你给出一个数,要求这个是每一组其中一个数的因数(非1),给出任意满足的一个数,不存在则输出-1. 思路1:刚开始乱七八糟暴力了一下果断超时,然后想到了把每组两个数相乘, ...
- CodeForces - 1025B Weakened Common Divisor
http://codeforces.com/problemset/problem/1025/B 大意:n对数对(ai,bi),求任意一个数满足是所有数对中至少一个数的因子(大于1) 分析: 首先求所有 ...
- Codeforces #505(div1+div2) B Weakened Common Divisor
题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...
- codeforces 1025B Weakened Common Divisor(质因数分解)
题意: 给你n对数,求一个数,可以让他整除每一对数的其中一个 思路: 枚举第一对数的质因数,然后暴力 代码: #include<iostream> #include<cstdio&g ...
随机推荐
- webpack插件url-loader使用规范
其实说到性能优化,他的范围太广了,今天我们就只聊一聊通过webpack配置减少http请求数量这个点吧. 简单说下工作中遇到的问题吧,我们做的一个项目中首页用了十多张图片,每张图片都是一个静态资源,所 ...
- LightOJ 1278 - Sum of Consecutive Integers 分解奇因子 + 思维
http://www.lightoj.com/volume_showproblem.php?problem=1278 题意:问一个数n能表示成几种连续整数相加的形式 如6=1+2+3,1种. 思路:先 ...
- HDU 5901 Count primes 大素数计数
题意:计算1~N间素数的个数(N<=1e11) 题解:题目要求很简单,作为论文题,模板有两种 \(O(n^\frac{3}{4} )\),另一种lehmer\(O(n^\frac{2}{3})\ ...
- 2015/9/9 Python基础(10):文件和输入输出
文件对象文件对象不仅可以用来访问普通的磁盘文件,而且也可以访问其它任何类型抽象层面上的“文件”.一旦设置了合适的“钩子”,你就可以访问文件类型接口的其它对象,就好像访问的是普通文件一样.文件对象的处理 ...
- [洛谷P3444] [POI2006]ORK-Ploughing
洛谷题目链接[POI2006]ORK-Ploughing 题目描述 Byteasar, the farmer, wants to plough his rectangular field. He ca ...
- jsp04状态管理
1.http 协议的无状态性 无状态是指,当浏览器发送请求给服务器的时候,服务器会响应.但当同一个浏览器再次发送请求时,服务器不会知道是刚才那个浏览器. 简单说,服务器[不会保存用户状态],不会记得客 ...
- truncate与delete以及drop
truncate:删除整个表,但不删除定义(删除了整个表的数据,但表结构还在) drop:删除整个表,表数据和表结构都删除了 delete:删除表中数据 比较delete和drop 1.truncat ...
- 【BZOJ4868】期末考试 [三分][贪心]
期末考试 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description Input Output Samp ...
- 【BZOJ】3779 重组病毒
[算法]Link-Cut Tree+线段树(维护DFS序) [题解]整整三天……T_T 这篇题解比较资瓷:permui 这道题虽然树形态没有变化,但用lct写的原因在于把题目中的操作一进行了神转化:每 ...
- Java——关于static关键字的那些事总结
前言: 先说说今天为啥要谈这个东西,虽然学Java已经有两年了,但是今天,本着温故而知新的态度,仔细的第三次翻看了<Head Firt Java>这本书,虽然这本书介绍的很多东西都特别基础 ...