1 spark streaming 程序代码实例
代码如下:
  1. object OnlineTheTop3ItemForEachCategory2DB {
  2. def main(args: Array[String]){
  3. val conf = new SparkConf() //创建SparkConf对象
  4. //设置应用程序的名称,在程序运行的监控界面可以看到名称
  5. conf.setAppName("OnlineTheTop3ItemForEachCategory2DB")
  6. conf.setMaster("spark://Master:7077") //此时,程序在Spark集群
  7. //设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口
  8. val ssc = new StreamingContext(conf, Seconds(5))
  9. ssc.checkpoint("/root/Documents/SparkApps/checkpoint")
  10. val soketDStream = ssc.socketTextStream("Master", 9999)
  11. /// 业务处理逻辑 .....
  12. ssc.start()
  13. ssc.awaitTermination()
  14. }
  15. }
 
2 Spark Streaming的运行源码分析

2.1 创建StreamingContext

 
我们将基于以上实例例,粗略地分析一下Spark源码,提示一些有针对性的内容,以了解其运行的主要流程。
1)代码没有直接使用SparkContext,而是使用StreamingContext。
我们来看看StreamingContext 的源码片段:
  1. /**
  2. * Create a StreamingContext by providing the configuration necessary for a new SparkContext.
  3. * @param conf a org.apache.spark.SparkConf object specifying Spark parameters
  4. * @param batchDuration the time interval at which streaming data will be divided into batches
  5. */
  6. def this(conf: SparkConf, batchDuration: Duration) = {
  7. this(StreamingContext.createNewSparkContext(conf), null, batchDuration)
  8. }
没错,createNewSparkContext就是创建SparkContext:
  1. private[streaming] def createNewSparkContext(conf: SparkConf): SparkContext = {
  2. new SparkContext(conf)
  3. }
 这说明Spark Streaming也是Spark上的一个应用程序。

2)案例最开始的地方肯定要通过数据流创建一个InputDStream。

  1. val socketDstram = ssc.socketTextStream("Master", 9999)

socketTextStream方法定义如下:

  1. /**
  2. * Create a input stream from TCP source hostname:port. Data is received using
  3. * a TCP socket and the receive bytes is interpreted as UTF8 encoded `\n` delimited
  4. * lines.
  5. * @param hostname      Hostname to connect to for receiving data
  6. * @param port          Port to connect to for receiving data
  7. * @param storageLevel  Storage level to use for storing the received objects
  8. *                      (default: StorageLevel.MEMORY_AND_DISK_SER_2)
  9. */
  10. def socketTextStream(
  11. hostname: String,
  12. port: Int,
  13. storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
  14. ): ReceiverInputDStream[String] = withNamedScope("socket text stream") {
  15. socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
  16. }

3)可看到代码最后面调用socketStream。

socketStream定义如下:
  1. /**
  2. * Create a input stream from TCP source hostname:port. Data is received using
  3. * a TCP socket and the receive bytes it interepreted as object using the given
  4. * converter.
  5. * @param hostname      Hostname to connect to for receiving data
  6. * @param port          Port to connect to for receiving data
  7. * @param converter     Function to convert the byte stream to objects
  8. * @param storageLevel  Storage level to use for storing the received objects
  9. * @tparam T            Type of the objects received (after converting bytes to objects)
  10. */
  11. def socketStream[T: ClassTag](
  12. hostname: String,
  13. port: Int,
  14. converter: (InputStream) => Iterator[T],
  15. storageLevel: StorageLevel
  16. ): ReceiverInputDStream[T] = {
  17. new SocketInputDStream[T](this, hostname, port, converter, storageLevel)
  18. }

4)实际上生成SocketInputDStream。

SocketInputDStream类如下:
  1. private[streaming]
  2. class SocketInputDStream[T: ClassTag](
  3. ssc_ : StreamingContext,
  4. host: String,
  5. port: Int,
  6. bytesToObjects: InputStream => Iterator[T],
  7. storageLevel: StorageLevel
  8. ) extends ReceiverInputDStream[T](ssc_) {
  9. def getReceiver(): Receiver[T] = {
  10. new SocketReceiver(host, port, bytesToObjects, storageLevel)
  11. }
  12. }

SocketInputDStream继承ReceiverInputDStream。

其中实现getReceiver方法,返回SocketReceiver对象。
总结一下SocketInputDStream的继承关系:
SocketInputDStream -> ReceiverInputDStream -> InputDStream -> DStream。  
 
5)DStream是生成RDD的模板,是逻辑级别,当达到Interval的时候这些模板会被batch data实例化成为RDD和DAG。
DStream的generatedRDDs:
  1. // RDDs generated, marked as private[streaming] so that testsuites can access it
  2. @transient
  3. private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()

DStream的getOrCompute:

  1. /**
  2. * Get the RDD corresponding to the given time; either retrieve it from cache
  3. * or compute-and-cache it.
  4. */
  5. private[streaming] final def getOrCompute(time: Time): Option[RDD[T]] = {
  6. // If RDD was already generated, then retrieve it from HashMap,
  7. // or else compute the RDD
  8. generatedRDDs.get(time).orElse {
  9. // Compute the RDD if time is valid (e.g. correct time in a sliding window)
  10. // of RDD generation, else generate nothing.
  11. if (isTimeValid(time)) {
  12. val rddOption = createRDDWithLocalProperties(time, displayInnerRDDOps = false) {
  13. // Disable checks for existing output directories in jobs launched by the streaming
  14. // scheduler, since we may need to write output to an existing directory during checkpoint
  15. // recovery; see SPARK-4835 for more details. We need to have this call here because
  16. // compute() might cause Spark jobs to be launched.
  17. PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
  18. compute(time)
  19. }
  20. }
  21. rddOption.foreach { case newRDD =>
  22. // Register the generated RDD for caching and checkpointing
  23. if (storageLevel != StorageLevel.NONE) {
  24. newRDD.persist(storageLevel)
  25. logDebug(s"Persisting RDD ${newRDD.id} for time $time to $storageLevel")
  26. }
  27. if (checkpointDuration != null && (time - zeroTime).isMultipleOf(checkpointDuration)) {
  28. newRDD.checkpoint()
  29. logInfo(s"Marking RDD ${newRDD.id} for time $time for checkpointing")
  30. }
  31. generatedRDDs.put(time, newRDD)
  32. }
  33. rddOption
  34. } else {
  35. None
  36. }
  37. }
  38. }

主要是生成RDD,再将生成的RDD放在HashMap中。具体生成RDD过程以后剖析。

目前大致讲了DStream和RDD这些核心概念在Spark Streaming中的使用。
 

2.2 启动StreamingContext

代码实例中的ssc.start() 方法启动StreamingContext,主要的逻辑发生在这个start方法中:

*  在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,

*  在JobScheduler的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和

*  ReceiverTacker的start方法:

*

*  1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job

*  其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG

*  而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,

*  在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中

*  基于RDD的Action触发真正的作业的运行)

*

*  2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动

*  ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把

*  数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过

*  ReceivedBlockTracker来管理接受到的元数据信息.

体现Spark Streaming应用运行流程的关键类如下图所示。
 
 
 
下面开启神奇的 源码分析之旅,过程痛苦,痛苦之后是大彻大悟的畅快...........
 
 
1)先看看ScreamingContext的start()。
start()方法启动StreamContext,由于Spark应用程序不能有多个SparkContext对象实例,所以Spark Streaming框架在启动时对状态进行判断。代码如下:
  1. /**
  2. * Start the execution of the streams.
  3. *
  4. * @throws IllegalStateException if the StreamingContext is already stopped.
  5. */
  6. def start(): Unit = synchronized {
  7. state match {
  8. case INITIALIZED =>
  9. startSite.set(DStream.getCreationSite())
  10. StreamingContext.ACTIVATION_LOCK.synchronized {
  11. StreamingContext.assertNoOtherContextIsActive()
  12. try {
  13. validate()
  14. // Start the streaming scheduler in a new thread, so that thread local properties
  15. // like call sites and job groups can be reset without affecting those of the
  16. // current thread.
  17. //线程本地存储,线程有自己的私有属性,设置这些线程的时候不会影响其他线程,
  18. ThreadUtils.runInNewThread("streaming-start") {
  19. sparkContext.setCallSite(startSite.get)
  20. sparkContext.clearJobGroup()
  21. sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
  22. //启动JobScheduler
  23. scheduler.start()
  24. }
  25. state = StreamingContextState.ACTIVE
  26. } catch {
  27. case NonFatal(e) =>
  28. logError("Error starting the context, marking it as stopped", e)
  29. scheduler.stop(false)
  30. state = StreamingContextState.STOPPED
  31. throw e
  32. }
  33. StreamingContext.setActiveContext(this)
  34. }
  35. shutdownHookRef = ShutdownHookManager.addShutdownHook(
  36. StreamingContext.SHUTDOWN_HOOK_PRIORITY)(stopOnShutdown)
  37. // Registering Streaming Metrics at the start of the StreamingContext
  38. assert(env.metricsSystem != null)
  39. env.metricsSystem.registerSource(streamingSource)
  40. uiTab.foreach(_.attach())
  41. logInfo("StreamingContext started")
  42. case ACTIVE =>
  43. logWarning("StreamingContext has already been started")
  44. case STOPPED =>
  45. throw new IllegalStateException("StreamingContext has already been stopped")
  46. }
  47. }
初始状态时,会启动JobScheduler。
 
2)接着来看下JobScheduler的启动过程start()。
其中启动了EventLoop、StreamListenerBus、ReceiverTracker和jobGenerator等多项工作。
  1. def start(): Unit = synchronized {
  2. if (eventLoop != null) return // scheduler has already been started
  3. logDebug("Starting JobScheduler")
  4. eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
  5. override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
  6. override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
  7. }
  8. // 启动消息循环处理线程。用于处理JobScheduler的各种事件。
  9. eventLoop.start()
  10. // attach rate controllers of input streams to receive batch completion updates
  11. for {
  12. inputDStream <- ssc.graph.getInputStreams
  13. // rateController可以控制输入速度
  14. rateController <- inputDStream.rateController
  15. } ssc.addStreamingListener(rateController)
  16. // 启动监听器。用于更新Spark UI中StreamTab的内容。
  17. listenerBus.start(ssc.sparkContext)
  18. receiverTracker = new ReceiverTracker(ssc)
  19. // 生成InputInfoTracker。用于管理所有的输入的流,以及他们输入的数据统计。这些信息将通过 StreamingListener监听。
  20. inputInfoTracker = new InputInfoTracker(ssc)
  21. // 启动ReceiverTracker。用于处理数据接收、数据缓存、Block生成。
  22. receiverTracker.start()
  23. // 启动JobGenerator。用于DStreamGraph初始化、DStream与RDD的转换、生成Job、提交执行等工作。
  24. jobGenerator.start()
  25. logInfo("Started JobScheduler")
  26. }
3)JobScheduler中的消息处理函数processEvent。
处理三类消息:Job已开始,Job已完成,错误报告。
  1. private def processEvent(event: JobSchedulerEvent) {
  2. try {
  3. event match {
  4. case JobStarted(job, startTime) => handleJobStart(job, startTime)
  5. case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
  6. case ErrorReported(m, e) => handleError(m, e)
  7. }
  8. } catch {
  9. case e: Throwable =>
  10. reportError("Error in job scheduler", e)
  11. }
  12. }
4)我们再粗略地分析一下JobScheduler.start()中启动的工作。
4.1)先看JobScheduler.start()启动的第一项工作EventLoop。
EventLoop用于处理JobScheduler的各种事件。
EventLoop中有事件队列:
  1. private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]()
还有一个线程处理队列中的事件:
  1. private val eventThread = new Thread(name) {
  2. setDaemon(true)
  3. override def run(): Unit = {
  4. try {
  5. while (!stopped.get) {
  6. val event = eventQueue.take()
  7. try {
  8. onReceive(event)
  9. } catch {
  10. case NonFatal(e) => {
  11. try {
  12. onError(e)
  13. } catch {
  14. case NonFatal(e) => logError("Unexpected error in " + name, e)
  15. }
  16. }
  17. }
  18. }
  19. } catch {
  20. case ie: InterruptedException => // exit even if eventQueue is not empty
  21. case NonFatal(e) => logError("Unexpected error in " + name, e)
  22. }
  23. }
  24. }

这个线程中的onReceive、onError,在JobScheduler中的EventLoop实例化时已定义。

4.2)JobScheduler.start()启动的第二项工作StreamListenerBus。
- 用于异步传递StreamingListenerEvents到注册的StreamingListeners。
- 用于更新Spark UI中StreamTab的内容。
 
 
4.3)看JobScheduler.start()启动的第三项工作ReceiverTracker。
ReceiverTracker用于管理所有的输入的流,以及他们输入的数据统计。
这些信息将通过 StreamingListener监听。
ReceiverTracker的start()中,会内部实例化ReceiverTrackerEndpoint这个Rpc消息通信体。
 
 def start(): Unit = synchronized {
if (isTrackerStarted) {
throw new SparkException("ReceiverTracker already started")
} if (!receiverInputStreams.isEmpty) {
endpoint = ssc.env.rpcEnv.setupEndpoint(
"ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv))
if (!skipReceiverLaunch) launchReceivers()
logInfo("ReceiverTracker started")
trackerState = Started
}
}
 
在ReceiverTracker启动的过程中会调用其launchReceivers方法:
 
/**
* Get the receivers from the ReceiverInputDStreams, distributes them to the
* worker nodes as a parallel collection, and runs them.
*/
private def launchReceivers(): Unit = {
val receivers = receiverInputStreams.map(nis => {
val rcvr = nis.getReceiver()
rcvr.setReceiverId(nis.id)
rcvr
})
runDummySparkJob()
logInfo("Starting " + receivers.length + " receivers")
endpoint.send(StartAllReceivers(receivers))
}
其中调用了runDummySparkJob方法来启动Spark Streaming的框架第一个Job,其中collect这个action操作会触发Spark Job的执行。这个方法是为了确保每个Slave都注册上,避免所有Receiver都在一个节点,使后面的计算能负载均衡。
 
/**
* Run the dummy Spark job to ensure that all slaves have registered. This avoids all the
* receivers to be scheduled on the same node.
*
* TODO Should poll the executor number and wait for executors according to
* "spark.scheduler.minRegisteredResourcesRatio" and
* "spark.scheduler.maxRegisteredResourcesWaitingTime" rather than running a dummy job.
*/
private def runDummySparkJob(): Unit = {
if (!ssc.sparkContext.isLocal) {
ssc.sparkContext.makeRDD( to , ).map(x => (x, )).reduceByKey(_ + _, ).collect()
}
assert(getExecutors.nonEmpty)
}
ReceiverTracker.launchReceivers()还调用了endpoint.send(StartAllReceivers(receivers))方法,Rpc消息通信体发送StartAllReceivers消息。
ReceiverTrackerEndpoint它自己接收到消息后,先根据调度策略获得Recevier在哪个Executor上运行,然后在调用startReceiver(receiver, executors)方法,来启动Receiver。
override def receive: PartialFunction[Any, Unit] = {
// Local messages
case StartAllReceivers(receivers) =>
val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors)
for (receiver <- receivers) {
val executors = scheduledLocations(receiver.streamId)
updateReceiverScheduledExecutors(receiver.streamId, executors)
receiverPreferredLocations(receiver.streamId) = receiver.preferredLocation
startReceiver(receiver, executors)
}
在startReceiver方法中,ssc.sparkContext.submitJob提交Job的时候传入startReceiverFunc这个方法,因为startReceiverFunc该方法是在Executor上执行的。而在startReceiverFunc方法中实例化ReceiverSupervisorImpl对象,该对象是对Receiver进行管理和监控。这个Job是Spark Streaming框架为我们启动的第二个Job,且一直运行。因为supervisor.awaitTermination()该方法会阻塞等待退出。
 
/**
* Start a receiver along with its scheduled executors
*/
private def startReceiver(
receiver: Receiver[_],
scheduledLocations: Seq[TaskLocation]): Unit = {
def shouldStartReceiver: Boolean = { // ........... 此处省略1万字 (无关代码) , 呵呵哒 ......... // Function to start the receiver on the worker node
val startReceiverFunc: Iterator[Receiver[_]] => Unit =
(iterator: Iterator[Receiver[_]]) => {
if (!iterator.hasNext) {
throw new SparkException(
"Could not start receiver as object not found.")
}
if (TaskContext.get().attemptNumber() == ) {
val receiver = iterator.next()
assert(iterator.hasNext == false)
//实例化Receiver监控者
val supervisor = new ReceiverSupervisorImpl(
receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption)
supervisor.start()
supervisor.awaitTermination()
} else {
// It's restarted by TaskScheduler, but we want to reschedule it again. So exit it.
}
} // Create the RDD using the scheduledLocations to run the receiver in a Spark job
val receiverRDD: RDD[Receiver[_]] =
if (scheduledLocations.isEmpty) {
ssc.sc.makeRDD(Seq(receiver), )
} else {
val preferredLocations = scheduledLocations.map(_.toString).distinct
ssc.sc.makeRDD(Seq(receiver -> preferredLocations))
} receiverRDD.setName(s"Receiver $receiverId")
ssc.sparkContext.setJobDescription(s"Streaming job running receiver $receiverId")
ssc.sparkContext.setCallSite(Option(ssc.getStartSite()).getOrElse(Utils.getCallSite()))
val future = ssc.sparkContext.submitJob[Receiver[_], Unit, Unit](
receiverRDD,
startReceiverFunc, //提交Job时候传入startReceiverFunc这个方法,因为startReceiverFunc该方法是在Executor上执行的
Seq(), (_, _) => Unit, ()) // 一直重启 receiver job直到 ReceiverTracker is stopped
future.onComplete {
case Success(_) =>
if (!shouldStartReceiver) {
onReceiverJobFinish(receiverId)
} else {
logInfo(s"Restarting Receiver $receiverId")
self.send(RestartReceiver(receiver))
}
case Failure(e) =>
if (!shouldStartReceiver) {
onReceiverJobFinish(receiverId)
} else {
logError("Receiver has been stopped. Try to restart it.", e)
logInfo(s"Restarting Receiver $receiverId")
self.send(RestartReceiver(receiver))
}
}(submitJobThreadPool)
logInfo(s"Receiver ${receiver.streamId} started")
}
接下来看下ReceiverSupervisorImpl的启动过程,先启动所有注册上的BlockGenerator对象,然后向ReceiverTrackerEndpoint发送RegisterReceiver消息,再调用receiver的onStart方法。
 
/** Start the supervisor */
def start() {
onStart()
startReceiver()
}
 
其中的onStart():启动所有注册上的BlockGenerator对象
override protected def onStart() {
registeredBlockGenerators.foreach { _.start() }
}
 
其中的startReceiver()方法中调用onReceiverStart()然后再调用receiver的onStart方法。
 
/** Start receiver */
def startReceiver(): Unit = synchronized {
try {
if (onReceiverStart()) {
logInfo("Starting receiver")
receiverState = Started
receiver.onStart()
logInfo("Called receiver onStart")
} else {
// The driver refused us
stop("Registered unsuccessfully because Driver refused to start receiver " + streamId, None)
}
} catch {
case NonFatal(t) =>
stop("Error starting receiver " + streamId, Some(t))
}
}
 
在onReceiverStart()中向ReceiverTrackerEndpoint发送RegisterReceiver消息
 
override protected def onReceiverStart(): Boolean = {
val msg = RegisterReceiver(
streamId, receiver.getClass.getSimpleName, host, executorId, endpoint)
trackerEndpoint.askWithRetry[Boolean](msg)
}
 
其中在Driver运行的ReceiverTrackerEndpoint对象接收到RegisterReceiver消息后,将streamId, typ, host, executorId, receiverEndpoint封装为ReceiverTrackingInfo保存到内存对象receiverTrackingInfos这个HashMap中。
 
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
// Remote messages
case RegisterReceiver(streamId, typ, host, executorId, receiverEndpoint) =>
val successful =
registerReceiver(streamId, typ, host, executorId, receiverEndpoint, context.senderAddress)
context.reply(successful)
 
registerReceiver方法源码:
/** Register a receiver */
private def registerReceiver(
streamId: Int,
typ: String,
host: String,
executorId: String,
receiverEndpoint: RpcEndpointRef,
senderAddress: RpcAddress
): Boolean = {
if (!receiverInputStreamIds.contains(streamId)) {
throw new SparkException("Register received for unexpected id " + streamId)
} // ........... 此处省略1万字 (无关代码) , 呵呵哒 ......... if (!isAcceptable) {
// Refuse it since it's scheduled to a wrong executor
false
} else {
val name = s"${typ}-${streamId}"
val receiverTrackingInfo = ReceiverTrackingInfo(
streamId,
ReceiverState.ACTIVE,
scheduledLocations = None,
runningExecutor = Some(ExecutorCacheTaskLocation(host, executorId)),
name = Some(name),
endpoint = Some(receiverEndpoint))
receiverTrackingInfos.put(streamId, receiverTrackingInfo)
listenerBus.post(StreamingListenerReceiverStarted(receiverTrackingInfo.toReceiverInfo))
logInfo("Registered receiver for stream " + streamId + " from " + senderAddress)
true
}
}
 
Receiver的启动,以ssc.socketTextStream("localhost", 9999)为例,创建的是SocketReceiver对象。内部启动一个线程来连接Socket Server,读取socket数据并存储。
 
private[streaming]
class SocketReceiver[T: ClassTag](
host: String,
port: Int,
bytesToObjects: InputStream => Iterator[T],
storageLevel: StorageLevel
) extends Receiver[T](storageLevel) with Logging { def onStart() {
// Start the thread that receives data over a connection
new Thread("Socket Receiver") {
setDaemon(true)
override def run() { receive() }
}.start()
} /** Create a socket connection and receive data until receiver is stopped */
def receive() {
var socket: Socket = null
try {
logInfo("Connecting to " + host + ":" + port)
socket = new Socket(host, port)
logInfo("Connected to " + host + ":" + port)
val iterator = bytesToObjects(socket.getInputStream())
while(!isStopped && iterator.hasNext) {
store(iterator.next)
}
if (!isStopped()) {
restart("Socket data stream had no more data")
} else {
logInfo("Stopped receiving")
}
} catch {
// ........... 此处省略1万字 (无关代码) , 呵呵哒 .........
}
}
 
4.4)接下来看JobScheduler.start()中启动的第四项工作JobGenerator。
JobGenerator有成员RecurringTimer,用于启动消息系统和定时器。按照batchInterval时间间隔定期发送GenerateJobs消息。
 
//根据创建StreamContext时传入的batchInterval,定时发送GenerateJobs消息
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator") JobGenerator的start()方法:
/** Start generation of jobs */
def start(): Unit = synchronized {
if (eventLoop != null) return // generator has already been started // Call checkpointWriter here to initialize it before eventLoop uses it to avoid a deadlock.
// See SPARK-10125
checkpointWriter eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = {
jobScheduler.reportError("Error in job generator", e)
}
} // 启动消息循环处理线程
eventLoop.start() if (ssc.isCheckpointPresent) {
restart()
} else {
// 开启定时生成Job的定时器
startFirstTime()
}
}
 
JobGenerator.start()中的startFirstTime()的定义:
/** Starts the generator for the first time */
private def startFirstTime() {
val startTime = new Time(timer.getStartTime())
graph.start(startTime - graph.batchDuration)
timer.start(startTime.milliseconds)
logInfo("Started JobGenerator at " + startTime)
}
JobGenerator.start()中的processEvent()的定义:
  1. /** Processes all events */
  2. private def processEvent(event: JobGeneratorEvent) {
  3. logDebug("Got event " + event)
  4. event match {
  5. case GenerateJobs(time) => generateJobs(time)
  6. case ClearMetadata(time) => clearMetadata(time)
  7. case DoCheckpoint(time, clearCheckpointDataLater) =>
  8. doCheckpoint(time, clearCheckpointDataLater)
  9. case ClearCheckpointData(time) => clearCheckpointData(time)
  10. }
  11. }

其中generateJobs的定义:

/** Generate jobs and perform checkpoint for the given `time`.  */
private def generateJobs(time: Time) {
// Set the SparkEnv in this thread, so that job generation code can access the environment
// Example: BlockRDDs are created in this thread, and it needs to access BlockManager
// Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
SparkEnv.set(ssc.env)
Try { // 根据特定的时间获取具体的数据
jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
//调用DStreamGraph的generateJobs生成Job
graph.generateJobs(time) // generate jobs using allocated block
} match {
case Success(jobs) =>
val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}
 
DStreamGraph的generateJobs方法,调用输出流的generateJob方法来生成Jobs集合。
// 输出流:具体Action的输出操作
private val outputStreams = new ArrayBuffer[DStream[_]]() def generateJobs(time: Time): Seq[Job] = {
logDebug("Generating jobs for time " + time)
val jobs = this.synchronized {
outputStreams.flatMap { outputStream =>
val jobOption = outputStream.generateJob(time)
jobOption.foreach(_.setCallSite(outputStream.creationSite))
jobOption
}
}
logDebug("Generated " + jobs.length + " jobs for time " + time)
jobs
}
 
来看下DStream的generateJob方法,调用getOrCompute方法来获取当Interval的时候,DStreamGraph会被BatchData实例化成为RDD,如果有RDD则封装jobFunc方法,里面包含context.sparkContext.runJob(rdd, emptyFunc),然后返回封装后的Job。
  1. /**
  2. * Generate a SparkStreaming job for the given time. This is an internal method that
  3. * should not be called directly. This default implementation creates a job
  4. * that materializes the corresponding RDD. Subclasses of DStream may override this
  5. * to generate their own jobs.
  6. */
  7. private[streaming] def generateJob(time: Time): Option[Job] = {
  8. getOrCompute(time) match {
  9. case Some(rdd) => {
  10. val jobFunc = () => {
  11. val emptyFunc = { (iterator: Iterator[T]) => {} }
  12. context.sparkContext.runJob(rdd, emptyFunc)
  13. }
  14. Some(new Job(time, jobFunc))
  15. }
  16. case None => None
  17. }
  18. }

接下来看JobScheduler的submitJobSet方法,向线程池中提交JobHandler。而JobHandler实现了Runnable 接口,最终调用了job.run()这个方法。看一下Job类的定义,其中run方法调用的func为构造Job时传入的jobFunc,其包含了context.sparkContext.runJob(rdd, emptyFunc)操作,最终导致Job的提交。

def submitJobSet(jobSet: JobSet) {
if (jobSet.jobs.isEmpty) {
logInfo("No jobs added for time " + jobSet.time)
} else {
listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
jobSets.put(jobSet.time, jobSet)
jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
logInfo("Added jobs for time " + jobSet.time)
}
}
 
JobHandler实现了Runnable 接口,最终调用了job.run()这个方法:
private class JobHandler(job: Job) extends Runnable with Logging {
import JobScheduler._ def run() {
try { // *********** 此处省略无关代码 ******************* // We need to assign `eventLoop` to a temp variable. Otherwise, because
// `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then
// it's possible that when `post` is called, `eventLoop` happens to null.
var _eventLoop = eventLoop
if (_eventLoop != null) {
_eventLoop.post(JobStarted(job, clock.getTimeMillis()))
// Disable checks for existing output directories in jobs launched by the streaming
// scheduler, since we may need to write output to an existing directory during checkpoint
// recovery; see SPARK-4835 for more details.
PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
job.run()
}
_eventLoop = eventLoop
if (_eventLoop != null) {
_eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
}
} else {
// JobScheduler has been stopped.
}
} finally {
ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null)
ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null)
}
}
}
}
Job的代码片段:
  1. private[streaming]
  2. class Job(val time: Time, func: () => _) {
  3. private var _id: String = _
  4. private var _outputOpId: Int = _
  5. private var isSet = false
  6. private var _result: Try[_] = null
  7. private var _callSite: CallSite = null
  8. private var _startTime: Option[Long] = None
  9. private var _endTime: Option[Long] = None
  10. def run() {
  11. _result = Try(func())
  12. }
 
以上是主要源码的分析,累死宝宝了,......慢慢的成就感 
 

5.Spark Streaming流计算框架的运行流程源码分析2的更多相关文章

  1. Dream_Spark-----Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码

    Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码   本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运 ...

  2. Spark Streaming实时计算框架介绍

    随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在 ...

  3. 贯通Spark Streaming流计算框架的运行源码

    本章节内容: 一.在线动态计算分类最热门商品案例回顾 二.基于案例贯通Spark Streaming的运行源码 先看代码(源码场景:用户.用户的商品.商品的点击量排名,按商品.其点击量排名前三): p ...

  4. 基于案例贯通 Spark Streaming 流计算框架的运行源码

    本期内容 : Spark Streaming+Spark SQL案例展示 基于案例贯穿Spark Streaming的运行源码 一. 案例代码阐述 : 在线动态计算电商中不同类别中最热门的商品排名,例 ...

  5. 65、Spark Streaming:数据接收原理剖析与源码分析

    一.数据接收原理 二.源码分析 入口包org.apache.spark.streaming.receiver下ReceiverSupervisorImpl类的onStart()方法 ### overr ...

  6. 【Streaming】30分钟概览Spark Streaming 实时计算

    本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...

  7. Storm分布式实时流计算框架相关技术总结

    Storm分布式实时流计算框架相关技术总结 Storm作为一个开源的分布式实时流计算框架,其内部实现使用了一些常用的技术,这里是对这些技术及其在Storm中作用的概括介绍.以此为基础,后续再深入了解S ...

  8. StreamDM:基于Spark Streaming、支持在线学习的流式分析算法引擎

    StreamDM:基于Spark Streaming.支持在线学习的流式分析算法引擎 streamDM:Data Mining for Spark Streaming,华为诺亚方舟实验室开源了业界第一 ...

  9. Spark练习之通过Spark Streaming实时计算wordcount程序

    Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...

随机推荐

  1. Weblogic 9.2 启动时报错 javax.xml.namespace.QName

    启动Weblogic 时会报错.javax.xml.namespace.QName; local class incompatible: stream classdesc serialVersionU ...

  2. 51Nod 1009 数字1的个数 | 数位DP

    题意: 小于等于n的所有数中1的出现次数 分析: 数位DP 预处理dp[i][j]存 从1~以j开头的i位数中有几个1,那么转移方程为: if(j == 1) dp[i][j] = dp[i-1][9 ...

  3. LightOJ 1321 - Sending Packets 简单最短路+期望

    http://www.lightoj.com/volume_showproblem.php?problem=1321 题意:每条边都有概率无法经过,但可以重新尝试,现给出成功率,传输次数和传输时间,求 ...

  4. redis启动脚本

    #!/bin/sh # # Simple Redis init.d script conceived to work on Linux systems # as it does use of the ...

  5. 【hdu5381】维护区间内所有子区间的gcd之和-线段树

    题意:给定n个数,m个询问,每次询问一个区间内所有连续子区间的gcd的和.n,m<=10^5 题解: 这题和之前比赛的一题很像.我们从小到大枚举r,固定右端点枚举左端点,维护的区间最多只有log ...

  6. 【BZOJ】3895: 取石子

    [算法]博弈论+记忆化搜索 [题意]给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 [题解] 首先,若所有石子堆的石子数>1,显然总操作数为(石子 ...

  7. 【洛谷 P2742】【模板】二维凸包

    题目链接 二维凸包板子..有时间会补总结的. #include <cstdio> #include <cmath> #include <algorithm> usi ...

  8. @EnableEurekaClient源码分析

    @EnableEurekaClient注解,从源码的角度分析是如何work的 NetFlix Eureka client Eureka client 负责与Eureka Server 配合向外提供注册 ...

  9. 3.0docker操作

    登录镜像资源 docker login daocloud.io username: password: docker login : 登陆到一个Docker镜像仓库,如果未指定镜像仓库地址,默认为官方 ...

  10. windows下常用快捷键(转)

    原文转自 https://blog.csdn.net/LJFPHP/article/details/78818696 win+E                 打开文件管器 win+D        ...