[BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了。
重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献。
设k为总结点数,对于DFS,我们有$T(1)=O(\log k)$,$T(k)=4T(\frac{k}{2})+O(k^2)$。
根据主定理,$O(n^{\log_ba})=O(n^2)$。故时间复杂度为$O(k^2\log k)$,即$O(2^{2n}n)$。
- #include<cstdio>
- #include<algorithm>
- #define rep(i,l,r) for (int i=(l); i<=(r); i++)
- using namespace std;
- const int N=;
- int n,m,mx,c[N],a[][N][N],f[N][N];
- void dfs(int x,int d){
- if (d==n){
- f[x][]=f[x][]=;
- for (int j=x>>; j; j>>=) f[x][c[j]]+=a[c[j]][x][j];
- return;
- }
- int ls=x<<,rs=ls|;
- rep(i,,<<(n-d)) f[x][i]=;
- c[x]=; dfs(ls,d+); dfs(rs,d+);
- rep(i,,min(m,<<(n-d))) rep(j,,min(m-i,(<<(n-d))-i))
- f[x][i+j]=max(f[x][i+j],f[ls][i]+f[rs][j]);
- c[x]=; dfs(ls,d+); dfs(rs,d+);
- rep(i,,min(m,<<(n-d))) rep(j,,min(m-i,(<<(n-d))-i))
- f[x][i+j]=max(f[x][i+j],f[ls][i]+f[rs][j]);
- }
- int main(){
- freopen("bzoj4007.in","r",stdin);
- freopen("bzoj4007.out","w",stdout);
- scanf("%d%d",&n,&m);
- rep(i,<<(n-),(<<n)-)
- for (int j=i>>; j; j>>=) scanf("%d",&a[][i][j]);
- rep(i,<<(n-),(<<n)-)
- for (int j=i>>; j; j>>=) scanf("%d",&a[][i][j]);
- dfs(,);
- rep(i,,m) mx=max(mx,f[][i]);
- printf("%d\n",mx);
- return ;
- }
[BZOJ4007][JLOI2015]战争调度(DP+主定理)的更多相关文章
- 【BZOJ 4007】[JLOI2015]战争调度 DP+搜索+状压
又是一道思路清新的小清晰. 观察题目,如果我们确定了平民或者贵族的任意一方,我们便可以贪心的求出另一方,至此20分:我们发现层数十分小,那么我们就也是状压层数,用lca转移,线性dp,至此50分(好像 ...
- BZOJ4007 [JLOI2015]战争调度
根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...
- 【BZOJ4007】[JLOI2015]战争调度(动态规划)
[BZOJ4007][JLOI2015]战争调度(动态规划) 题面 BZOJ 洛谷 题解 神仙题,我是做不来. 一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人 ...
- [JLOI2015]战争调度
[JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp
Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...
- [JLOI2015]战争调度【暴力+树形Dp】
Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...
- bzoj4007 & loj2111 [JLOI2015]战争调度 复杂度分析+树上背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4007 https://loj.ac/problem/2111 题解 同 [NOI2006]网络 ...
- 【题解】JLOI2015战争调度
搜索+状压+DP. 注意到一个性质:考虑一棵以x为根的子树,在x到原树的根的路径上的点如果都已经确定了方案,那么x的左右儿子的决策就彼此独立,互不影响了.所以我们考虑状压一条路径上每一层节点的状态,求 ...
随机推荐
- 关于反序列化时抛出java.io.EOFException异常
https://www.cnblogs.com/ouhaitao/p/7683568.html https://blog.csdn.net/mym43210/article/details/40081 ...
- 深入理解 Java 多线程核心知识:跳槽面试必备
多线程相对于其他 Java 知识点来讲,有一定的学习门槛,并且了解起来比较费劲.在平时工作中如若使用不当会出现数据错乱.执行效率低(还不如单线程去运行)或者死锁程序挂掉等等问题,所以掌握了解多线程至关 ...
- Can you answer these queries?(HDU4027+势能线段树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4027 题目: 题意:n个数,每次区间更新将其数值变成它的根号倍(向下取整),区间查询数值和. 思路:易 ...
- appcan UI
appcan UI 公共类 ([appcanUI框架地址:](http://newdocx.appcan.cn/UI/source) .ub { display: -webkit-box !impor ...
- js跨域上传文件 iframe
封装好的jq插件 (function () { var iframe = '<iframe name="jqUploadIframe" style="display ...
- 对vue中 默认的 config/index.js:配置的详细理解 -【以及webpack配置的理解】-config配置的目的都是为了服务webpack的配置,给不同的编译条件提供配置
当我们需要和后台分离部署的时候,必须配置config/index.js: 用vue-cli 自动构建的目录里面 (环境变量及其基本变量的配置) var path = require('path') ...
- hdu 1087 Super Jumping! Jumping! Jumping!(动态规划DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1087 Super Jumping! Jumping! Jumping! Time Limit: 200 ...
- perl6中函数参数(2)
use v6; #如果参数是可选的, 可以在后面加个?后定义 sub Choo($x, $y?){ say $x+$y; } Choo(); Choo(,); #具名参数, 也就是字典形式的调用 su ...
- ubuntu下定时弹窗记录工作日志
背景 记录工作日志,是一个很好的习惯,但不容易坚持,本来打算每天记录,但经常拖延,拖着拖着,有一些事情就忘记了. 等到写周报或月报的时候,才会开始翻邮件,聊天记录,各个仓库的提交log等,回忆都干了些 ...
- python爬虫模块之URL管理器模块
URL管理器模块 一般是用来维护爬取的url和未爬取的url已经新添加的url的,如果队列中已经存在了当前爬取的url了就不需要再重复爬取了,另外防止造成一个死循环.举个例子 我爬www.baidu. ...