第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了。

重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献。

设k为总结点数,对于DFS,我们有$T(1)=O(\log k)$,$T(k)=4T(\frac{k}{2})+O(k^2)$。

根据主定理,$O(n^{\log_ba})=O(n^2)$。故时间复杂度为$O(k^2\log k)$,即$O(2^{2n}n)$。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int n,m,mx,c[N],a[][N][N],f[N][N]; void dfs(int x,int d){
if (d==n){
f[x][]=f[x][]=;
for (int j=x>>; j; j>>=) f[x][c[j]]+=a[c[j]][x][j];
return;
}
int ls=x<<,rs=ls|;
rep(i,,<<(n-d)) f[x][i]=;
c[x]=; dfs(ls,d+); dfs(rs,d+);
rep(i,,min(m,<<(n-d))) rep(j,,min(m-i,(<<(n-d))-i))
f[x][i+j]=max(f[x][i+j],f[ls][i]+f[rs][j]);
c[x]=; dfs(ls,d+); dfs(rs,d+);
rep(i,,min(m,<<(n-d))) rep(j,,min(m-i,(<<(n-d))-i))
f[x][i+j]=max(f[x][i+j],f[ls][i]+f[rs][j]);
} int main(){
freopen("bzoj4007.in","r",stdin);
freopen("bzoj4007.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,<<(n-),(<<n)-)
for (int j=i>>; j; j>>=) scanf("%d",&a[][i][j]);
rep(i,<<(n-),(<<n)-)
for (int j=i>>; j; j>>=) scanf("%d",&a[][i][j]);
dfs(,);
rep(i,,m) mx=max(mx,f[][i]);
printf("%d\n",mx);
return ;
}

[BZOJ4007][JLOI2015]战争调度(DP+主定理)的更多相关文章

  1. 【BZOJ 4007】[JLOI2015]战争调度 DP+搜索+状压

    又是一道思路清新的小清晰. 观察题目,如果我们确定了平民或者贵族的任意一方,我们便可以贪心的求出另一方,至此20分:我们发现层数十分小,那么我们就也是状压层数,用lca转移,线性dp,至此50分(好像 ...

  2. BZOJ4007 [JLOI2015]战争调度

    根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...

  3. 【BZOJ4007】[JLOI2015]战争调度(动态规划)

    [BZOJ4007][JLOI2015]战争调度(动态规划) 题面 BZOJ 洛谷 题解 神仙题,我是做不来. 一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人 ...

  4. [JLOI2015]战争调度

    [JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...

  5. 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp

    题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...

  6. 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp

    Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...

  7. [JLOI2015]战争调度【暴力+树形Dp】

    Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...

  8. bzoj4007 & loj2111 [JLOI2015]战争调度 复杂度分析+树上背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4007 https://loj.ac/problem/2111 题解 同 [NOI2006]网络 ...

  9. 【题解】JLOI2015战争调度

    搜索+状压+DP. 注意到一个性质:考虑一棵以x为根的子树,在x到原树的根的路径上的点如果都已经确定了方案,那么x的左右儿子的决策就彼此独立,互不影响了.所以我们考虑状压一条路径上每一层节点的状态,求 ...

随机推荐

  1. mysql 索引最左原则原理

    索引本质是一棵B+Tree,联合索引(col1, col2,col3)也是. 其非叶子节点存储的是第一个关键字的索引,而叶节点存储的则是三个关键字col1.col2.col3三个关键字的数据,且按照c ...

  2. python学习笔记(六)之操作符

    python中算术操作符: + - * / % ** // 注意: /:为真实除法,即对应数学中的除法,通常返回一个浮点数 //:取整除法,即取商 %:求模,即取余数 **:幂运算,这里需要注意的一点 ...

  3. 简易微信小程序签到功能

    一.效果图 点击签到后 二.数据库 用一张数据表存用户签到的信息,每次用户签到都会往表中添加一条记录了用户id和签到日期的数据,如下图 三.后端 后端写两个接口,一个用于查询用户今日是否签到和签到记录 ...

  4. 14、char和varchar的区别?

    就长度来说: ♣ char的长度是不可变的; ♣ 而varchar的长度是可变的,也就是说,定义一个char[10]和varchar[10],如果存进去的是‘csdn’,那么char所占的长度依然为1 ...

  5. JS 控制页面刷新

    .页面自动刷新:把如下代码加入<head>区域中 <meta http-equiv=">,其中20指每隔20秒刷新一次页面. .页面自动跳转:把如下代码加入<h ...

  6. python基础===zmail,收发邮件的模块

    项目地址: GitHub:https://github.com/ZYunH/zmail  介绍: https://mp.weixin.qq.com/s?__biz=MzAxMjUyNDQ5OA==&a ...

  7. python实战===用python识别图片中的中文

    需要安装的模块 PIL pytesseract 需要下载的工具: http://download.csdn.net/download/bo_mask/10196285 因为之前百度云的链接总失效,所以 ...

  8. (八)hope

    vi svnserve.conf vi passwdvi authz svnserve -d -r /usr/svnkillall svnserveps -ef | grep svnserve svn ...

  9. C++中STL容器的比较

    基本参考 https://blog.csdn.net/qq_14898543/article/details/51381642 容器特性: vector:典型的序列容器,C++标准严格要求次容器的实现 ...

  10. 设计模式之笔记--抽象工厂模式(Abstract Factory)

    抽象工厂模式(Abstract Factory) 定义 抽象工厂模式(Abstract Factory),提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类. 类图 描述 多个抽象产品 ...