[BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了。
重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献。
设k为总结点数,对于DFS,我们有$T(1)=O(\log k)$,$T(k)=4T(\frac{k}{2})+O(k^2)$。
根据主定理,$O(n^{\log_ba})=O(n^2)$。故时间复杂度为$O(k^2\log k)$,即$O(2^{2n}n)$。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int n,m,mx,c[N],a[][N][N],f[N][N]; void dfs(int x,int d){
if (d==n){
f[x][]=f[x][]=;
for (int j=x>>; j; j>>=) f[x][c[j]]+=a[c[j]][x][j];
return;
}
int ls=x<<,rs=ls|;
rep(i,,<<(n-d)) f[x][i]=;
c[x]=; dfs(ls,d+); dfs(rs,d+);
rep(i,,min(m,<<(n-d))) rep(j,,min(m-i,(<<(n-d))-i))
f[x][i+j]=max(f[x][i+j],f[ls][i]+f[rs][j]);
c[x]=; dfs(ls,d+); dfs(rs,d+);
rep(i,,min(m,<<(n-d))) rep(j,,min(m-i,(<<(n-d))-i))
f[x][i+j]=max(f[x][i+j],f[ls][i]+f[rs][j]);
} int main(){
freopen("bzoj4007.in","r",stdin);
freopen("bzoj4007.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,<<(n-),(<<n)-)
for (int j=i>>; j; j>>=) scanf("%d",&a[][i][j]);
rep(i,<<(n-),(<<n)-)
for (int j=i>>; j; j>>=) scanf("%d",&a[][i][j]);
dfs(,);
rep(i,,m) mx=max(mx,f[][i]);
printf("%d\n",mx);
return ;
}
[BZOJ4007][JLOI2015]战争调度(DP+主定理)的更多相关文章
- 【BZOJ 4007】[JLOI2015]战争调度 DP+搜索+状压
又是一道思路清新的小清晰. 观察题目,如果我们确定了平民或者贵族的任意一方,我们便可以贪心的求出另一方,至此20分:我们发现层数十分小,那么我们就也是状压层数,用lca转移,线性dp,至此50分(好像 ...
- BZOJ4007 [JLOI2015]战争调度
根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...
- 【BZOJ4007】[JLOI2015]战争调度(动态规划)
[BZOJ4007][JLOI2015]战争调度(动态规划) 题面 BZOJ 洛谷 题解 神仙题,我是做不来. 一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人 ...
- [JLOI2015]战争调度
[JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp
Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...
- [JLOI2015]战争调度【暴力+树形Dp】
Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...
- bzoj4007 & loj2111 [JLOI2015]战争调度 复杂度分析+树上背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4007 https://loj.ac/problem/2111 题解 同 [NOI2006]网络 ...
- 【题解】JLOI2015战争调度
搜索+状压+DP. 注意到一个性质:考虑一棵以x为根的子树,在x到原树的根的路径上的点如果都已经确定了方案,那么x的左右儿子的决策就彼此独立,互不影响了.所以我们考虑状压一条路径上每一层节点的状态,求 ...
随机推荐
- 基于 Docker 的 Zabbix 微服务系统
zabbix 官网提供一个镜像 [ zabbix-appliance ], 可以直接拉起一个 zabbix-server. 但是数据库无法分离出来. 本实践使用 zabbix 官方提供的 Docker ...
- Response.Redirect在新窗口打开(转载)
Response.Rederect在默认情况下是在本页跳转,所以除了在js中用window.open或是给A标签添加target属性之外,在后台似乎不能来打开新的页面,其实不然,通过设置form的ta ...
- div圆角
div{ -moz-border-radius: 10px; -webkit-border-radius: 10px; border-radius: 10px;}
- 【Python学习笔记】Coursera课程《Using Databases with Python》 密歇根大学 Charles Severance——Week4 Many-to-Many Relationships in SQL课堂笔记
Coursera课程<Using Databases with Python> 密歇根大学 Week4 Many-to-Many Relationships in SQL 15.8 Man ...
- python基础===修改属性的值
可以以三种不同的方式修改属性的值:直接通过实例进行修改:通过方法进行设置:通过方法进行递增(增加特定的值).下面依次介绍这些方法. class Car(): def __init__(self, ma ...
- sicily 4699. 简单哈希
Description 使用线性探测法(Linear Probing)可以解决哈希中的冲突问题,其基本思想是:设哈希函数为h(key) = d, 并且假定哈希的存储结构是循环数组, 则当冲突发生时, ...
- c#中char、string转换为十六进制byte的浅析
问题引出: string转换为byte(十六进制) static void Main(string[] args) { "; byte[] b = Encoding.Default.GetB ...
- java的集合类面试题
转自:https://yq.aliyun.com/articles/78788?spm=5176.8252056.759076.3.uFYrmt java.util包中包含了一系列重要的集合类,而对于 ...
- cacti (可以利用yum安装cacti的配置)
[root@localhost ~]# yum install -y epel-release[root@localhost ~]# [root@localhost ~]# yum install - ...
- Hibernate检索策略与检索方式
hibernate的Session在加载Java对象时,一般都会把鱼这个对象相关联的其他Java对象也都加载到缓存中,以方便程序的调用.但很多情况下,我们不需要加载太多无用的对象到缓存中,一来会占用大 ...