JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥
http://172.20.6.3/Problem_Show.asp?id=1518
最开始只想到了n^2的写法,肯定要超时的,所以要对求gcd的过程进行优化。
首先是前缀和容斥,很好理解。
第二个优化大致如下:
u为莫比乌斯函数,t为gcd(x,y)为i的倍数的数的个数;
满足gcd(x,y)=1的数字对的数量=sigma(1<=i<=min(x,y))u[i]*t[i];
t[i]=(x/i)*(y-i);
由小数向下取整可知有连续的i满足x/i为定值,y/i也是定值,所以可以分块计算,用u[i]的前缀和*定值,加快求gcd(x,y)=1的对数的速度。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
using namespace std;
const int maxn=;
int n;
int a,b,c,d,k;
bool vis[maxn]={};
int ur[maxn]={},su[maxn]={},sum[maxn]={},tot=;
void doit(){
sum[]=;ur[]=;
for(int i=;i<maxn;i++){
if(!vis[i]){ur[i]=-;su[++tot]=i;}
for(int j=;j<=tot&&i*su[j]<maxn;j++){
int z=i*su[j];vis[z]=;
if(i%su[j]==)break;
ur[z]=ur[su[j]]*ur[i];
}
sum[i]=sum[i-]+ur[i];
}
}
int getit(int x,int y){
int z=,nex=;
if(x>y)swap(x,y);
for(int i=;i<=x;i=nex+){
int xx=x/i,yy=y/i;
nex=min(x/xx,y/yy);
z+=(sum[nex]-sum[i-])*xx*yy;
}
return z;
}
int main(){
doit();int ans=;
scanf("%d",&n);
while(n-->){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
a-=;c-=;
a/=k;b/=k;c/=k;d/=k;
ans=;ans+=getit(b,d);ans-=getit(b,c);ans-=getit(a,d);ans+=getit(a,c);
printf("%d\n",ans);
}
return ;
}
JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥的更多相关文章
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- 【LOJ#6374】网格(二项式反演,容斥)
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...
- HDU 5213 分块 容斥
给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询 ...
- bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...
- bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...
- bzoj2301(莫比乌斯反演+分块)
传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
随机推荐
- cocos2dx 某缩放的页面 CCTableView最后一个标签无法点中
有一个二级界面,在ipad4下面放大到1.6倍,直接对最外层的CCLayer缩放的,里面包含有CCTableView.结果运行的时候无法选中到最后一个标签,无论总的标签是2个还是更多,单步调试,发现到 ...
- pythonTensorFlow实现yolov3训练自己的目标检测探测自定义数据集
1.数据集准备,使用label标注好自己的数据集. https://github.com/tzutalin/labelImg 打开连接直接下载数据标注工具, 2.具体的大师代码见下链接 https:/ ...
- csc_滤镜filter和实现透明的两种方式
有这样一个需求,给一个地图实现半透明效果. 使用css滤镜属性可以实现:filter. 下面是属性的所以值 filter: none | blur() | brightness() | contras ...
- Android控件——监听按钮的点击事件
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAroAAAFTCAIAAABZPDiZAAAgAElEQVR4nOy9918UWfb///1jdu2uBs
- 20179205《Linux内核原理与分析》第一周作业
输出 shiyanlou 图形字符的命令banner: 新建用户wangyazhe,输入密码不会显示出来: 利用sudo adduser添加一个用户 loutest,mkdir创建一个新的文件夹opt ...
- free函数在操作系统内存中的实现【转】
转自:http://www.2cto.com/kf/201210/160985.html 我一次性malloc十个单位节点的内存空间出来赋值给L, 现在我想一次性删除从第3个到第6个节点,我是这么做的 ...
- python写一段脚本代码自动完成输入(目录下的所有)文件的数据替换(修改数据和替换数据都是输入的)【转】
转自:http://blog.csdn.net/lixiaojie1012/article/details/23628129 初次尝试python语言,感觉用着真舒服,简单明了,库函数一调用就OK了 ...
- python--数据持久化
python中与数据持久化有关的模块有很多,像pickle.json之类的就不介绍了,这里介绍两个其他的模块:dbm和shelve 1.dbm ''' 在一些小型程序中,不需要关系型数据库时,可以方便 ...
- git学习笔记二-branch分支
1.刚创建好的空仓库的分支是空的,即使是master分支也是不存在的.master分支是不能通过git branch 来创建的,只有在完成第一次提交才会自动创建,有git自动完成master分子的创建 ...
- leetcode 之Remove Duplicates from Sorted List(17)
很简单的一题,需要注意的是如果某结点重复了记得将其删除. ListNode *deleteDuplicates(ListNode *head) { if (head == nullptr) retur ...