JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥
http://172.20.6.3/Problem_Show.asp?id=1518
最开始只想到了n^2的写法,肯定要超时的,所以要对求gcd的过程进行优化。
首先是前缀和容斥,很好理解。
第二个优化大致如下:
u为莫比乌斯函数,t为gcd(x,y)为i的倍数的数的个数;
满足gcd(x,y)=1的数字对的数量=sigma(1<=i<=min(x,y))u[i]*t[i];
t[i]=(x/i)*(y-i);
由小数向下取整可知有连续的i满足x/i为定值,y/i也是定值,所以可以分块计算,用u[i]的前缀和*定值,加快求gcd(x,y)=1的对数的速度。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
using namespace std;
const int maxn=;
int n;
int a,b,c,d,k;
bool vis[maxn]={};
int ur[maxn]={},su[maxn]={},sum[maxn]={},tot=;
void doit(){
sum[]=;ur[]=;
for(int i=;i<maxn;i++){
if(!vis[i]){ur[i]=-;su[++tot]=i;}
for(int j=;j<=tot&&i*su[j]<maxn;j++){
int z=i*su[j];vis[z]=;
if(i%su[j]==)break;
ur[z]=ur[su[j]]*ur[i];
}
sum[i]=sum[i-]+ur[i];
}
}
int getit(int x,int y){
int z=,nex=;
if(x>y)swap(x,y);
for(int i=;i<=x;i=nex+){
int xx=x/i,yy=y/i;
nex=min(x/xx,y/yy);
z+=(sum[nex]-sum[i-])*xx*yy;
}
return z;
}
int main(){
doit();int ans=;
scanf("%d",&n);
while(n-->){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
a-=;c-=;
a/=k;b/=k;c/=k;d/=k;
ans=;ans+=getit(b,d);ans-=getit(b,c);ans-=getit(a,d);ans+=getit(a,c);
printf("%d\n",ans);
}
return ;
}
JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥的更多相关文章
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- 【LOJ#6374】网格(二项式反演,容斥)
[LOJ#6374]网格(二项式反演,容斥) 题面 LOJ 要从\((0,0)\)走到\((T_x,T_y)\),每次走的都是一个向量\((x,y)\),要求\(0\le x\le M_x,0\le ...
- HDU 5213 分块 容斥
给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询 ...
- bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...
- bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...
- bzoj2301(莫比乌斯反演+分块)
传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
随机推荐
- 代码合并:Merge、Rebase 的选择
图解 Git 命令 基本用法 上面的四条命令在工作目录.stage 缓存(也叫做索引)和 commit 历史之间复制文件. git add files 把工作目录中的文件加入 stage 缓存 git ...
- c语言中网络字节序和主机字节序的转换
函数说明 相关函数:htonl, htons, ntohl 头文件:#include <netinet/in.h> 定义函数:unsigned short int ntohs(unsi ...
- php中使用static方法
<?php class Char{ public static $number = 0; public static $name; function __construct($what){ se ...
- html meta标签作用
1.概要 标签提供关于HTML文档的元数据.元数据不会显示在页面上,但是对于机器是可读的.它可用于浏览器(如何显示内容或重新加载页面),搜索引擎(关键词),或其他web服务. 必要属性: conten ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- 004_ssh连接慢的问题的解决?
<1>群中同学遇到的问题,我之前在uuwatch也遇到了同样的问题? 问个问题师兄们 突然之间 公司服务器连接很慢 连一个shell需要10几秒钟 服务器就在公司全是内网服务器, 我也不知 ...
- 如何用jQuery获得radio的值
如何获得radio的值,在网上查了一下,下面总结几种解决方法,. 1.获取选中值: $('input:radio:checked').val(): $("input[type='radio' ...
- Linux下通过jstat命令查看jvm的GC情况
jstat命令可以查看堆内存各部分的使用量,以及加载类的数量.命令的格式如下: jstat [-命令选项] [vmid] [间隔时间/毫秒] [查询次数] 注意!!!:使用的jdk版本是jdk8. ...
- ora11g listener.ora
配置内容方式1: LISTENER = (DESCRIPTION_LIST = (DESCRIPTION = (ADDRESS = (PROTOCOL = IPC) (KEY = EXTPROC152 ...
- linux命令(15):mount/umount命令
使用挂盘之前可以先使用fdisk -l查看硬盘分区情况. 命令格式: mount [-t vfstype] [-o options] device dir -t vfstype 指定文件系统的类型.常 ...