http://acm.hdu.edu.cn/showproblem.php?pid=5730

分治FFT模板。

DP:\(f(i)=\sum\limits_{j=0}^{i-1}f(j)\times a(i-j)\)

递推第i位时要用到0到i-1位,cdq套FFT,考虑每一位上f的贡献即可。

时间复杂度\(O(n\log^2n)\)。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int N = 200003;
const int p = 313;
double Pi = acos(-1); struct cp {
double r, i;
cp(double _r = 0, double _i = 0) : r(_r), i(_i) {}
cp operator + (const cp &x) {return cp(r + x.r, i + x.i);}
cp operator - (const cp &x) {return cp(r - x.r, i - x.i);}
cp operator * (const cp &x) {return cp(r * x.r - i * x.i, r * x.i + i * x.r);}
} S[N]; void DFT(cp *A, int *rev, int n, int flag) {
for (int i = 0; i < n; ++i) S[rev[i]] = A[i];
for (int i = 0; i < n; ++i) A[i] = S[i];
for (int len = 2; len <= n; len <<= 1) {
int mid = len >> 1; cp wn = cp(cos(Pi / mid), sin(Pi / mid) * flag);
for (int i = 0; i < n; i += len) {
cp w = cp(1, 0);
for (int j = 0; j < mid; ++j) {
cp u = A[i + j], t = A[i + j + mid] * w;
A[i + j] = u + t;
A[i + j + mid] = u - t;
w = w * wn;
}
}
}
if (flag == -1) for (int i = 0; i < n; ++i) A[i].r /= n;
} cp A[N], B[N]; int n, a[N], f[N], rev[N]; void cdq(int l, int r) {
if (l == r) return;
int mid = (l + r) >> 1;
cdq(l, mid); int len = r - l + 1, fn = 1, c0 = 0;
while (fn < len) fn <<= 1, ++c0; for (int i = 0; i < fn; ++i) {
int num = i, &res = rev[i]; res = 0;
for (int j = 0; j < c0; ++j, num >>= 1) {
res <<= 1;
if (num & 1) res |= 1;
}
}
for (int i = l; i <= mid; ++i) A[i - l] = cp(f[i], 0);
for (int i = mid + 1 - l; i < fn; ++i) A[i] = cp(0, 0);
for (int i = 0; i < len; ++i) B[i] = cp(a[i], 0);
for (int i = len; i < fn; ++i) B[i] = cp(0, 0); DFT(A, rev, fn, 1);
DFT(B, rev, fn, 1);
for (int i = 0; i < fn; ++i) A[i] = A[i] * B[i];
DFT(A, rev, fn, -1); for (int i = mid + 1; i <= r; ++i) (f[i] += ((int)(A[i - l].r + 0.5))) %= p;
cdq(mid + 1, r);
} int main() {
while (true) {
scanf("%d", &n); if (!n) break;
memset(a, 0, sizeof(a));
memset(f, 0, sizeof(f));
for (int i = 1; i <= n; ++i) scanf("%d", a + i), a[i] %= p;
f[0] = 1;
cdq(0, n);
printf("%d\n", f[n]);
}
return 0;
}

【HDU 5730】Shell Necklace的更多相关文章

  1. HDU - 5730 :Shell Necklace(CDQ分治+FFT)

    Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n b ...

  2. 【HDU5730】Shell Necklace(多项式运算,分治FFT)

    [HDU5730]Shell Necklace(多项式运算,分治FFT) 题面 Vjudge 翻译: 有一个长度为\(n\)的序列 已知给连续的长度为\(i\)的序列装饰的方案数为\(a[i]\) 求 ...

  3. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  4. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  5. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  6. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  7. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  8. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  9. 【HDU5730】 Shell Necklace

    HDU5730 Shell Necklace 题目大意 已知连续i(1<=i<=n)个贝壳组合成一段项链的方案数a[i],求组合成包含n个贝壳的项链的总方案数. Solution cdq分 ...

随机推荐

  1. 实现拷贝函数(strcpy)

    #include <stdio.h> #include <stdlib.h> // 函数声明 char *mystrcpy(char *object, char *source ...

  2. Warning: File upload error - unable to create a temporary file in Unknown on line 0

    upload_tmp_dir 临时文件夹问题 上传文件提示 Warning: File upload error - unable to create a temporary file in Unkn ...

  3. bzoj 1927 网络流

    首先我们可以知道这道题中每个点只能经过一次,那么我们引入附加源汇source,sink,那么我们可以将每个点拆成两个点,分别表示对于图中这个节点我们的进和出,那么我们可以连接(source,i,1,0 ...

  4. Python模块学习 - click

    Click模块 click模块是Flask的作者开发的一个第三方模块,用于快速创建命令行.它的作用与Python标准库的argparse相同,但是,使用起来更简单. click是一个第三方库,因此使用 ...

  5. 使用PTGui软件将全景图变成鱼眼图

    把全景图变成鱼眼图.方法一部分是自己研究的,一部分是参考学妹街景合成鱼眼照片的方法. 需要使用的软件是PTGui.是个收费软件,价格还不便宜.操作一下,安装完后就可以开始合成鱼眼图了. 加载图像 打开 ...

  6. barrier 和 preempt_disable() 学习【转】

    #define preempt_disable() \ do{ \ inc_preempt_count(); \ barrier();    \ }while(0) 一.这个barrier 在干什么. ...

  7. perl多线程tcp端口扫描器(原创)

    perl多线程tcp端口扫描器(原创) http://bbs.chinaunix.net/thread-1457744-1-1.html perl socket 客户端发送消息 http://blog ...

  8. 设计模式之笔记--单例模式(Singleton)

    单例模式(Singleton) 定义 单例模式(Singleton),保证一个类仅有一个实例,并提供一个访问它的全局访问点. 类图 描述 类Singleton的构造函数的修饰符为private,防止用 ...

  9. vue有关绑定的知识点

    一.v-bind绑定class 1.对象的形式 <div :class="{text-danger:true}"></div> 数组形式绑定class &l ...

  10. FineReport——JS监听其他控件事件

    首先在参数面板和报表中分布添加一个button,用于被监听: 参数面板 控件名:temp: temp点击事件:alert("temp"); 报表 控件名:exprt: temp点击 ...