HDU 6057 Kanade's convolution(FWT)
【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=6057
【题目大意】
有 C[k]=∑_(i&j=k)A[i^j]*B[i|j]
求 Ans=∑ C[i]*1526^i%998244353
【题解】
将C[k]代入Ans的计算式得到 Ans=∑ A[i^j]*B[i|j]*1526^(i&j)%MOD
我们发现(i^j)&(i&j)=0且(i^j)^(i&j)=i|j,
因此bit[i^j]+bit[i&j]=bit[i|j],并有(i^j)|(i&j)=i|j
设x=i^j, y=i&j, z=i|j 我们发现x&z=x,
所以每对乘法乘上2^bit[x]的参数即可。
我们计算1526^x和A[y]*2^bit[y]的or卷积,然后按位和B数组相乘。
考虑bit[x]+bit[y]=bit[z]的卷积限制要求,我们将x和y按照bit进行分维,
对于维度做和为bit[x]+bit[y]=bit[z]的子集FWT。
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int mod=998244353;
LL pow(LL a,LL b,LL p){LL t=1;for(a%=p;b;b>>=1LL,a=a*a%p)if(b&1LL)t=t*a%p;return t;}
void FWT(int*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
int x=a[i+j],y=a[i+j+d];
a[i+j+d]=(x+y)%mod;
}
}
void UFWT(int*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
int x=a[i+j],y=a[i+j+d];
a[i+j+d]=(y-x+mod)%mod;
}
}
const int N=1<<20;
int n;
int A[21][N],B[21][N],C[21][N],bit[N],a[N],b[N],c[N];
int main(){
while(~scanf("%d",&n)){
int len=1<<n;
for(int i=0;i<len;i++)scanf("%d",&a[i]);
for(int i=0;i<len;i++)scanf("%d",&b[i]);
for(int i=0;i<len;i++)bit[i]=bit[i>>1]+(i&1);
memset(A,0,sizeof(A));
memset(B,0,sizeof(B));
memset(C,0,sizeof(C));
LL t=1;
for(int i=0;i<len;i++){
A[bit[i]][i]=1LL*a[i]*(1<<bit[i])%mod;
B[bit[i]][i]=t;
t=t*1526%mod;
}
for(int i=0;i<=n;i++){
FWT(A[i],len);
FWT(B[i],len);
}
for(int k=0;k<=n;k++){
for(int j=0;j+k<=n;j++){
for(int i=0;i<len;i++)C[j+k][i]=(C[j+k][i]+1LL*A[j][i]*B[k][i]%mod)%mod;
}
}
for(int i=0;i<=n;i++)UFWT(C[i],len);
for(int i=0;i<len;i++)c[i]=C[bit[i]][i];
LL ans=0;
for(int i=0;i<len;i++)ans=(ans+(1LL*c[i]*b[i])%mod)%mod;
printf("%d\n",ans);
}return 0;
}
HDU 6057 Kanade's convolution(FWT)的更多相关文章
- hdu 6057 Kanade's convolution(子集卷积)
题解: 然后就是接下来如何fwt 也就是如何处理bit(x) - bit(y) = bit(k)这个条件. 其实就是子集卷积. 把bit(x)和bit(y)划分成两个集合,然后就是子集卷积的形式. 这 ...
- [HDU6057] Kanade‘s convolution (FWT)
题面 出自HDU6057 给你两个数列 A [ 0... 2 m − 1 ] A[0...2^m-1] A[0...2m−1] 和 B [ 0... 2 m − 1 ] B[0...2^m-1] B[ ...
- HDU 6057 - Kanade's convolution | 2017 Multi-University Training Contest 3
/* HDU 6057 - Kanade's convolution [ FWT ] | 2017 Multi-University Training Contest 3 题意: 给定两个序列 A[0 ...
- 2017ACM暑期多校联合训练 - Team 3 1003 HDU 6058 Kanade's sum (模拟)
题目链接 Problem Description Give you an array A[1..n]of length n. Let f(l,r,k) be the k-th largest elem ...
- HDU 6057 Kanade's convolution
题目链接:HDU-6057 题意: 思路:先按照官方题解推导出下面的式子: 现在唯一的问题就是怎么解决[bit(x)-bit(y)=bit(k)]的问题. 我们定义\( F(A,k)_{i}=\lef ...
- 【CF850E】Random Elections(FWT)
[CF850E]Random Elections(FWT) 题面 洛谷 CF 题解 看懂题就是一眼题了... 显然三个人是等价的,所以只需要考虑一个人赢了另外两个人就好了. 那么在赢另外两个人的过程中 ...
- 【CF662C】Binary Table(FWT)
[CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...
- 「WC2018」州区划分(FWT)
「WC2018」州区划分(FWT) 我去弄了一个升级版的博客主题,比以前好看多了.感谢 @Wider 不过我有阅读模式的话不知为何 \(\text{LATEX}\) 不能用,所以我就把这个功能删掉了. ...
- 【HDU5909】Tree Cutting(FWT)
[HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...
随机推荐
- java提取SVN提交log
http://wiki.svnkit.com/Printing_Out_Repository_History 这个介绍的相当详细. 总之就是要使用SVNKit包,下载地址.http://svnkit. ...
- gridveiw的使用
using System;using System.Collections.Generic;using System.Linq;using System.Web;using System.Web.UI ...
- bzoj 1079 DP
比较容易看出来是DP,但是如果我们记录每一种颜色还剩多少种的话,消耗的转移的时间复杂度5^15,但是我们考虑到每一种颜色,如果数量相同的话,其实是等效的,所以我们用w[a][b][c][d][e][l ...
- embed标签 阻止点击事件 让父元素处理点击事件
由于规定页面显示的PDF文件要有固定大小,使得页面风格统一 最开始发现了CSS样式pointer-events 写出如下代码,在360急速浏览器急速模式中访问可在点击PDF控件时可跳转页面 <a ...
- Python作业模拟登陆(第一周)
模拟登陆:1. 用户输入帐号密码进行登陆2. 用户信息保存在文件内3. 用户密码输入错误三次后锁定用户 思路: 1. 用户名密码文件为passwd,锁定用户文件为lock 2. 用户输入账号密码采用i ...
- poj 2000 Gold Coins
题目链接:http://poj.org/problem?id=2000 题目大意:求N天得到多少个金币,第一天得到1个,第二.三天得到2个,第四.五.六天得到3个....以此类推,得到第N天的金币数. ...
- 通过or注入py脚本
代码思路 1.主要还是参考了别人的代码,确实自己写的和别人写的出路很大,主要归咎还是自己代码能力待提高吧. 2.将功能集合成一个函数,然后通过*args这个小技巧去调用.函数的参数不是argv的值,但 ...
- js/jq 键盘上下左右回车按键
js判断上下左右回车按键: document.onkeydown=function(e){ e=window.event||e; switch(e.keyCode){ case 37: //左键 co ...
- 在Linux中使用C语言实现控制流保护(CFG)【转】
转自:http://www.codesec.net/view/537311.html 一.前言 最近版本的windows有一个新的缓解措施叫做控制流保护(CFG).在一个非直接调用之前――例如,函数指 ...
- eComStation 1.2
https://thomas0008.ctfile.com/u/75519/87485 https://thomas0008.ctfile.com/downhtml/75519/428846/1508 ...