BZOJ 2323: [ZJOI2011]细胞
嗯。。csdn发得出markdown了。。请移步~ 个人觉得那个帅一点 嗯
好题啊!! 矩乘+DP
蒟蒻的我一开始发现了斐波那契数列之后就不会搞了。。
那个。。什么质量相同两种方案相同就是扯淡的。。想想就知道没有这种情况
先来说一下为什么是斐波那契
假设最后有n个点 则有n-1条东西 如果用f[x][0/1] 表示第x条割还是不割
不难得到方程f[x][0]=f[x-1][1],f[x][1]=f[x-1][0]+f[x-1][1] 答案是f[n-1][1] (最后一条一定要割)
化一下就是f[x][1]=f[x-1][1]+f[x-2][1] 嗯。。其实是不是斐波那契都行 因为变成矩乘都一样(不要问我为什么)
答案就是所有分割方案的 ∑ Fib[s-2]
可是你知道s会很大。。打到快速幂也玩不了
这时还需要一个按位的dp
f[i] = ∑ f[j-1]*k^x (1<=j<=i)
x表示j到i表示的数
K就是斐波那契矩阵
0 1
1 1
因此我们来进行拆位 预处理出k的10进制次幂(10,100,^1000...)
为了方便 让 f数组用矩阵表示 f[0]=k^(-2)
答案就是 f[n][2][2]
#include<bits/stdc++.h>
#define me(a,x) memset(a,x,sizeof a)
using namespace std;
typedef long long LL;
const int N=1005;
const LL mod=1000000007;
inline int read()
{
char ch=getchar(); int x=0,f=1;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
struct P{
LL c[3][3];
P(){me(c,0);}
}a[N],f[N];
char s[N]; int n;
P cheng(P a,P b)
{
P c;
for(int i=1;i<3;i++)for(int j=1;j<3;j++)
for(int k=1;k<3;k++)(c.c[i][j]+=(a.c[i][k]*b.c[k][j])%mod)%=mod;
return c;
}
void add(P &a,P b)
{
for(int i=1;i<3;i++)for(int j=1;j<3;j++)(a.c[i][j]+=b.c[i][j])%=mod;
}
int main()
{
scanf("%d%s",&n,s+1);
f[0].c[1][1]=2,f[0].c[1][2]=f[0].c[2][1]=-1,f[0].c[2][2]=1;
a[0].c[1][2]=a[0].c[2][1]=a[0].c[2][2]=1;
int i,j;
for(i=1;i<=n;i++)
{
P u=a[i]=a[i-1];
for(int x=9;x;x>>=1,u=cheng(u,u))
if(x&1)a[i]=cheng(a[i],u);
}
for(i=1;i<=n;i++)
{
P k; k.c[1][1]=k.c[2][2]=1;
for(j=i;j>0;j--)
{
int x=s[j]-'0';
while(x--)k=cheng(k,a[i-j]);
add(f[i],cheng(f[j-1],k));
}
}
printf("%lld\n",(f[n].c[2][2]+mod)%mod);
return 0;
}
BZOJ 2323: [ZJOI2011]细胞的更多相关文章
- 【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)
2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种 ...
- BZOJ 2323 细胞(矩阵)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2323 题意: 题意过于复杂,我直接简化下.给出一个长度为n的数字串,只包含1到9,将数字 ...
- bzoj 2324 [ZJOI2011]营救皮卡丘(floyd,费用流)
2324: [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1777 Solved: 712[Submit][Stat ...
- BZOJ 2324: [ZJOI2011]营救皮卡丘( floyd + 费用流 )
昨晚写的题...补发一下题解... 把1~N每个点拆成xi, yi 2个. 预处理i->j经过编号不超过max(i,j)的最短路(floyd) S->0(K, 0), S->xi(1 ...
- BZOJ.2324.[ZJOI2011]营救皮卡丘(费用流 Floyd)
BZOJ 洛谷 首先预处理出\(dis[i][j]\),表示从\(i\)到\(j\)的最短路.可以用\(Floyd\)处理. 注意\(i,j\)是没有大小关系限制的(\(i>j\)的\(dis[ ...
- [ZJOI2011]细胞——斐波那契数列+矩阵加速+dp
Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的( ...
- bzoj2323: [ZJOI2011]细胞
这题真神... 首先看到这么花里胡哨的题面眉头一皱就发现这个球的大小是搞笑的不然就没法做了,有用的是最终拆出来的长度 然后对于一段长度为n有n-1个丝状物的东西,写一个DP:f[i][2]表示枚举到第 ...
- bzoj 2324: [ZJOI2011]营救皮卡丘
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #inclu ...
- bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
随机推荐
- hihocoder1445 后缀自动机二·重复旋律5
传送门:http://hihocoder.com/problemset/problem/1445 [题解] 大概看了一天的后缀自动机,总算懂了一些 这篇文章写的非常好,诚意安利:Suffix Auto ...
- bzoj 1705: [Usaco2007 Nov]Telephone Wire 架设电话线——dp
Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...
- 【BZOJ】1699 [Usaco2007 Jan]Balanced Lineup排队
[算法]线段树 #include<cstdio> #include<cctype> #include<algorithm> using namespace std; ...
- react组件之间的几种通信情况
组件之间的几种通信情况 父组件向子组件通信 子组件向父组件通信 跨级组件通信 没有嵌套关系组件之间的通信 1,父组件向子组件传递 React数据流动是单向的,父组件向子组件通信也是最常见的;父组件通过 ...
- Django【设计】settings方案
配置文件: 目标:配置文件,默认配置和手动配置分开,参考django的配置文件方案,默认配置文件放在内部,只让用户做常用配置 /bin/settings.py(手动配置) PLUGIN_ITE ...
- ThinkPHP3.1.3 整合 UEditor百度编辑器 图片上传
第一步.前端模板实例化百度编辑器 <js file='__ROOT__/Data/UEditor/ueditor.config.js' /> <js file='__ROOT__/D ...
- python并发模块之concurrent.futures(一)
Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threadin ...
- PHP配置Configure报错:Please reinstall the libzip distribution
PHP配置Configure报错:Please reinstall the libzip distribution 发生情景: php执行配置命令configure时,报如下错误: checking ...
- Window Server 2008 R2 安装 Share Point 2013
原文地址:http://www.cnblogs.com/jianyus/p/3631905.html
- 【总结】IE和Firefox的Javascript兼容性总结
长久以来JavaScript兼容性一直是Web开发者的一个主要问题.在正式规范.事实标准以及各种实现之间的存在的差异让许多开发者日夜煎熬.为此,主要从以下几方面差异总结IE和Firefox的Javas ...