A new Graph Game

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2360    Accepted Submission(s): 951

Problem Description
An
undirected graph is a graph in which the nodes are connected by
undirected arcs. An undirected arc is an edge that has no arrow. Both
ends of an undirected arc are equivalent--there is no head or tail.
Therefore, we represent an edge in an undirected graph as a set rather
than an ordered pair.
Now given an undirected graph, you could delete
any number of edges as you wish. Then you will get one or more
connected sub graph from the original one (Any of them should have more
than one vertex).
You goal is to make all the connected sub graphs
exist the Hamiltonian circuit after the delete operation. What’s more,
you want to know the minimum sum of all the weight of the edges on the
“Hamiltonian circuit” of all the connected sub graphs (Only one
“Hamiltonian circuit” will be calculated in one connected sub graph!
That is to say if there exist more than one “Hamiltonian circuit” in one
connected sub graph, you could only choose the one in which the sum of
weight of these edges is minimum).
  For example, we may get two possible sums:

(1)  7 + 10 + 5 = 22
(2)  7 + 10 + 2 = 19
(There are two “Hamiltonian circuit” in this graph!)
 
Input
In the first line there is an integer T, indicates the number of test cases. (T <= 20)
In
each case, the first line contains two integers n and m, indicates the
number of vertices and the number of edges. (1 <= n <=1000, 0
<= m <= 10000)
Then m lines, each line contains three integers
a,b,c ,indicates that there is one edge between a and b, and the weight
of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1
<= c <= 10000)
 
Output
Output
“Case %d: “first where d is the case number counted from one. Then
output “NO” if there is no way to get some connected sub graphs that any
of them exists the Hamiltonian circuit after the delete operation.
Otherwise, output the minimum sum of weight you may get if you delete
the edges in the optimal strategy.

 
Sample Input
3

3 4
1 2 5
2 1 2
2 3 10
3 1 7

3 2
1 2 3
1 2 4

2 2
1 2 3
1 2 4

 
Sample Output
Case 1: 19
Case 2: NO
Case 3: 6
 
题意:将一个无向图删边得到一些子图,并使每个子图中存在哈密顿回路,并使所有哈密顿回路上边的权值最小。如果有,输出这个最小的子图,如果没有,输出NO。
题解:每个点的话就是出度和入度都为1了,每个点必须且仅走一次,这样的话就是二分图完美匹配了。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
int graph[N][N];
int lx[N], ly[N];
bool visitx[N], visity[N];
int slack[N];
int match[N];
int n,m;
bool Hungary(int u)
{
int temp;
visitx[u] = true;
for(int i = ; i <= n; ++i)
{
if(visity[i])
continue;
else
{
temp = lx[u] + ly[i] - graph[u][i];
if(temp == ) //相等子图
{
visity[i] = true;
if(match[i] == - || Hungary(match[i]))
{
match[i] = u;
return true;
}
}
else //松弛操作
slack[i] = min(slack[i], temp);
}
}
return false;
}
void KM()
{
int temp;
memset(match,-,sizeof(match));
memset(ly,,sizeof(ly));
for(int i = ;i <= n;i++) //定标初始化
lx[i] = -INF;
for(int i =;i<=n;i++)
for(int j=;j<= n;j++)
lx[i] = max(lx[i], graph[i][j]);
for(int i = ; i <= n;i++)
{
for(int j = ; j <= n;j++)
slack[j] = INF;
while()
{
memset(visitx,false,sizeof(visitx));
memset(visity,false,sizeof(visity));
if(Hungary(i))
break;
else
{
temp = INF;
for(int j = ; j <= n; ++j)
if(!visity[j]) temp = min(temp, slack[j]);
for(int j = ; j <= n; ++j)
{
if(visitx[j]) lx[j] -= temp;
if(visity[j]) ly[j] += temp;
else slack[j] -= temp;
}
}
}
}
}
int main()
{
int tcase;
int t= ;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
graph[i][j] = -INF;
}
}
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==v) continue;
graph[u][v] = graph[v][u] = max(graph[u][v],-w);
}
KM();
int ans = ;
bool flag = false;
for(int i=;i<=n;i++){
if(match[i]==-||graph[match[i]][i]==-INF){
flag = true;
break;
}
ans+=graph[match[i]][i];
}
printf("Case %d: ",t++);
if(flag)printf("NO\n");
else printf("%d\n",-ans);
}
return ;
}

hdu 3435(KM算法最优匹配)的更多相关文章

  1. hdu 2448(KM算法+SPFA)

    Mining Station on the Sea Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  2. HDU 2255 KM算法 二分图最大权值匹配

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  3. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  4. hdu 4862 KM算法 最小K路径覆盖的模型

    http://acm.hdu.edu.cn/showproblem.php?pid=4862 选t<=k次,t条路要经过全部的点一次而且只一次. 建图是问题: 我自己最初就把n*m 个点分别放入 ...

  5. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 1533 KM算法(权值最小的最佳匹配)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. HDU 3435 KM A new Graph Game

    和HDU 3488一样的,只不过要判断一下是否有解. #include <iostream> #include <cstdio> #include <cstring> ...

  8. hdu 1853 KM算法

    #include<stdio.h> #include<math.h> #include<string.h> #define N 200 #define inf 99 ...

  9. km算法(二分图最大权匹配)学习

    啦啦啦! KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转 化为求完备匹配的问题的.设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j].在 ...

随机推荐

  1. NOIP系列(续)

    马上就要告别noip了呢. 这道题大家都说dfs可过. 但是数据范围一眼状压啊. 首先假设点是有序的(选取有先后顺序),其实这并不影响什么,但是却省下大量的时间和代码长度. 然后状压,dp[i]表示状 ...

  2. [LOJ 6159] 最长树链

    看到要求gcd不为1所以肯定在这条答案链上都是一个质数的倍数,所以就会产生一个很暴力的想法 没错,正解就是这样的暴力 只让走是i(素数)倍数的点,作最长链 最长链可以树形dp或两遍bfs,一遍找端点, ...

  3. Ext之延时加载

    大家在多线程下使用extjs时应该遇到过以下情况: 同时渲染几个组件时,如果组件的内容是动态读取的时候,有时会出现后组件内容不是正确的渲染顺序出现的内容.比如同时渲染两个form,form的字段是动态 ...

  4. Django 2.0 URL

    Overview¶ A view is a “type” of Web page in your Django application that generally serves a specific ...

  5. JQuery学习五

    获取样式attr("myclass")移除样式removeClass("myclass")增加样式addClass("myclass")to ...

  6. 跨域共享cookie和跨域共享session

    转载自:http://blog.csdn.net/ahhsxy/article/details/7356128 这里所说的跨域,是指跨二级域名,而且这些域名对应的应用都在同一个app上, 比如我有以下 ...

  7. 【asp.net mvc】 扩展 htmlhelper 实现分页

    参考文档:http://www.cnblogs.com/caofangsheng/p/5670071.html                  http://www.cnblogs.com/arte ...

  8. EF数据更新时候异常情况一

    在不熟练EF的时候有时更新数据时候会报以下异常: 错误原因:此时操作的实体不是从数据库里获取的.而是自己new出来的实体然后赋值的.EF此时的存储池中已经有了这个实体,在new一个对象ID相同就不能共 ...

  9. Inner join case when

    SELECT ( ), wn.ActualWorkflowNumber) + ' ' + wi.SN ) AS SN , wi.RecordID , wi.WorkflowName , wc.Work ...

  10. Sass 基本函数

    Sass 中的常用函数 一.字符串函数 1. unquote($string): 删除字符串前后的引号,删除一对引号,如果这个字符串没有带有引号,将返回原始的字符串. 示例: .text1 { con ...