A new Graph Game

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2360    Accepted Submission(s): 951

Problem Description
An
undirected graph is a graph in which the nodes are connected by
undirected arcs. An undirected arc is an edge that has no arrow. Both
ends of an undirected arc are equivalent--there is no head or tail.
Therefore, we represent an edge in an undirected graph as a set rather
than an ordered pair.
Now given an undirected graph, you could delete
any number of edges as you wish. Then you will get one or more
connected sub graph from the original one (Any of them should have more
than one vertex).
You goal is to make all the connected sub graphs
exist the Hamiltonian circuit after the delete operation. What’s more,
you want to know the minimum sum of all the weight of the edges on the
“Hamiltonian circuit” of all the connected sub graphs (Only one
“Hamiltonian circuit” will be calculated in one connected sub graph!
That is to say if there exist more than one “Hamiltonian circuit” in one
connected sub graph, you could only choose the one in which the sum of
weight of these edges is minimum).
  For example, we may get two possible sums:

(1)  7 + 10 + 5 = 22
(2)  7 + 10 + 2 = 19
(There are two “Hamiltonian circuit” in this graph!)
 
Input
In the first line there is an integer T, indicates the number of test cases. (T <= 20)
In
each case, the first line contains two integers n and m, indicates the
number of vertices and the number of edges. (1 <= n <=1000, 0
<= m <= 10000)
Then m lines, each line contains three integers
a,b,c ,indicates that there is one edge between a and b, and the weight
of it is c . (1 <= a,b <= n, a is not equal to b in any way, 1
<= c <= 10000)
 
Output
Output
“Case %d: “first where d is the case number counted from one. Then
output “NO” if there is no way to get some connected sub graphs that any
of them exists the Hamiltonian circuit after the delete operation.
Otherwise, output the minimum sum of weight you may get if you delete
the edges in the optimal strategy.

 
Sample Input
3

3 4
1 2 5
2 1 2
2 3 10
3 1 7

3 2
1 2 3
1 2 4

2 2
1 2 3
1 2 4

 
Sample Output
Case 1: 19
Case 2: NO
Case 3: 6
 
题意:将一个无向图删边得到一些子图,并使每个子图中存在哈密顿回路,并使所有哈密顿回路上边的权值最小。如果有,输出这个最小的子图,如果没有,输出NO。
题解:每个点的话就是出度和入度都为1了,每个点必须且仅走一次,这样的话就是二分图完美匹配了。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = ;
const int N = ;
int graph[N][N];
int lx[N], ly[N];
bool visitx[N], visity[N];
int slack[N];
int match[N];
int n,m;
bool Hungary(int u)
{
int temp;
visitx[u] = true;
for(int i = ; i <= n; ++i)
{
if(visity[i])
continue;
else
{
temp = lx[u] + ly[i] - graph[u][i];
if(temp == ) //相等子图
{
visity[i] = true;
if(match[i] == - || Hungary(match[i]))
{
match[i] = u;
return true;
}
}
else //松弛操作
slack[i] = min(slack[i], temp);
}
}
return false;
}
void KM()
{
int temp;
memset(match,-,sizeof(match));
memset(ly,,sizeof(ly));
for(int i = ;i <= n;i++) //定标初始化
lx[i] = -INF;
for(int i =;i<=n;i++)
for(int j=;j<= n;j++)
lx[i] = max(lx[i], graph[i][j]);
for(int i = ; i <= n;i++)
{
for(int j = ; j <= n;j++)
slack[j] = INF;
while()
{
memset(visitx,false,sizeof(visitx));
memset(visity,false,sizeof(visity));
if(Hungary(i))
break;
else
{
temp = INF;
for(int j = ; j <= n; ++j)
if(!visity[j]) temp = min(temp, slack[j]);
for(int j = ; j <= n; ++j)
{
if(visitx[j]) lx[j] -= temp;
if(visity[j]) ly[j] += temp;
else slack[j] -= temp;
}
}
}
}
}
int main()
{
int tcase;
int t= ;
scanf("%d",&tcase);
while(tcase--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
graph[i][j] = -INF;
}
}
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
if(u==v) continue;
graph[u][v] = graph[v][u] = max(graph[u][v],-w);
}
KM();
int ans = ;
bool flag = false;
for(int i=;i<=n;i++){
if(match[i]==-||graph[match[i]][i]==-INF){
flag = true;
break;
}
ans+=graph[match[i]][i];
}
printf("Case %d: ",t++);
if(flag)printf("NO\n");
else printf("%d\n",-ans);
}
return ;
}

hdu 3435(KM算法最优匹配)的更多相关文章

  1. hdu 2448(KM算法+SPFA)

    Mining Station on the Sea Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  2. HDU 2255 KM算法 二分图最大权值匹配

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  3. hdu 3488(KM算法||最小费用最大流)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  4. hdu 4862 KM算法 最小K路径覆盖的模型

    http://acm.hdu.edu.cn/showproblem.php?pid=4862 选t<=k次,t条路要经过全部的点一次而且只一次. 建图是问题: 我自己最初就把n*m 个点分别放入 ...

  5. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 1533 KM算法(权值最小的最佳匹配)

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. HDU 3435 KM A new Graph Game

    和HDU 3488一样的,只不过要判断一下是否有解. #include <iostream> #include <cstdio> #include <cstring> ...

  8. hdu 1853 KM算法

    #include<stdio.h> #include<math.h> #include<string.h> #define N 200 #define inf 99 ...

  9. km算法(二分图最大权匹配)学习

    啦啦啦! KM算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转 化为求完备匹配的问题的.设顶点Xi的顶标为A[i],顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j].在 ...

随机推荐

  1. iOS-防止向SQLite数据库中插入重复数据记录:

    原则:先检测该数据库的指定表中,是否已经存在我们要插入的这条数据记录,若已经存在,则不插入这条数据记录(即忽略此次插入操作),若尚不存在,才插入这条数据记录(即才执行此次插入操作) 我们这里使用的是F ...

  2. 访问修饰符public,private,protected和default的区别?

    类的成员不写访问修饰符默认为default,默认对于同一个包的其他类相当于公开(public),对于不是同一个包的其他类相当于私有(private). 受保护(protected)对子类相当于公开,对 ...

  3. udhcp server端源码分析1--文件组织结构

    1:dhcpd.c udhcpd_main函数是整个程序的入口,依次完成的主要工作有读取配置文件信息至全局结构体.记录程序pid number.初始化lease链表.将程序作为daemon运行.死循环 ...

  4. NYOJ 832 DP

    合并游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 大家都知道Yougth除了热爱编程之外,他还有一个爱好就是喜欢玩. 某天在河边玩耍的时候,他发现了一种神奇的 ...

  5. 问题03.如果有多个集合的迭代处理情况【使用MAP】

    在SQL开发过程中,动态构建In集合条件查询是比较常见的用法,在Mybatis中提供了foreach功能,该功能比较强大,它允许你指定一个集合,声明集合项和索引变量,它们可以用在元素体内.它也允许你指 ...

  6. [LeetCode] 1. Two Sum ☆

    Given an array of integers, return indices of the two numbers such that they add up to a specific ta ...

  7. AngularJs 中的CheckBox前后台交互

    前台页面: <div class="form-group"> <label for="CompanyName" class="col ...

  8. Centos 6 FTP 配置

    How to configure ftp server on centos 6 Posted  krizna  Centos FTP – File transfer protocol is used ...

  9. 【BZOJ2946】公共串 [SAM]

    公共串 Time Limit: 3 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给出几个由小写字母构成的单词,求它们最 ...

  10. 【BZOJ】2151 种树

    [算法]贪心+堆 [题意]n个数字的序列,要求选择互不相邻的k个数字使和最大. [题解] 贪心,就是按一定顺序选取即可最优,不会反悔. 考虑第一个数字选择权值最大的,那么它相邻的两个数字就不能选择,那 ...