HDU 3333:http://acm.hdu.edu.cn/showproblem.php?pid=3333

这两个题是类似的,都是离线处理查询,对每次查询的区间的右端点进行排序。这里我们需要离散化处理一下,标记一下前面是否出现过这个值,然后不断更新last数组(该数组保存的是每个数最后一次出现的位置)。最后用树状数组维护。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int maxq = ;
struct node{
int l,r,index;
};
node query[maxq];
ll sum[maxn],ans[maxq];
ll a[maxn],b[maxn],last[maxn];
int n;
bool cmp(node a,node b){
return a.r < b.r;
}
ll getsum(int i){
ll s = ;
while(i > ){
s += sum[i];
i -= i&(-i);
}
return s;
}
void add(int i,ll x){
while(i <= n){
sum[i] += x;
i += i&(-i);
}
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i = ;i<=n;i++){
scanf("%I64d",&a[i]);
b[i] = a[i];//离散化用
}
sort(b+,b++n);//排序,以每个数的下标标记
int q;
scanf("%d",&q);
for(int i = ;i<=q;i++){
scanf("%d%d",&query[i].l,&query[i].r);
query[i].index = i;
}
sort(query+,query++q,cmp);
memset(sum,,sizeof(sum));
memset(last,,sizeof(last));
int cnt = ;//每个查询的下标
for(int i = ;i<=n;i++){
int index = lower_bound(b+,b++n,a[i])-b-;//找到该数对应的下标
if(last[index])//判断该数是否出现过,有的话减去
add(last[index],-a[i]);
add(i,a[i]);
last[index] = i;
while(query[cnt].r==i && cnt<=q){
ans[query[cnt].index] = getsum(query[cnt].r)-getsum(query[cnt].l-);
cnt++;
}
}
for(int i = ;i<=q;i++)
printf("%I64d\n",ans[i]);
}
return ;
}

Codeforces 703D:http://codeforces.com/contest/703/problem/D

这道题需要多思考的一步是,要求的区间内出现偶数次的数的异或和,等于这个区间内所有数字的异或和异或这个区间内不同数字的异或和,以1、2、1、3、3、2、3举例,结果就是(1^2^1^3^3^2^3)^(1^2^3),原理就是出现偶数次的数异或它自己等于它本身,出现奇数次的数异或它自己为0。对于区间的异或和,我们可以用数组很方便的求出,不同数字的异或和,只需要对上题进行一下改造就好了。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int maxn = ;
struct node{
int l,r,index;
};
node query[maxn];
ll sum[maxn],a[maxn],b[maxn],c[maxn],last[maxn],ans[maxn];
int n;
bool cmp(node a,node b){
return a.r < b.r;
}
ll getsum(int i){
ll s = ;
while(i > ){
s ^= sum[i];//注意
i -= i&(-i);
}
return s;
}
void add(int i,ll x){
while(i <= n){
sum[i] ^= x;//注意
i += i&(-i);
}
}
int main(){
scanf("%d",&n);
for(int i = ;i<=n;i++){
scanf("%I64d",&a[i]);
c[i] = a[i]^c[i-];//求前缀异或和
b[i] = a[i];
}
sort(b+,b++n);
int q;
scanf("%d",&q);
for(int i = ;i<=q;i++){
scanf("%d%d",&query[i].l,&query[i].r);
query[i].index = i;
}
sort(query+,query++q,cmp);
int cnt = ;
for(int i = ;i<=n;i++){
int index = lower_bound(b+,b++n,a[i])-b-;
if(last[index])
add(last[index],a[i]);
last[index] = i;
add(i,a[i]);
while(query[cnt].r==i && cnt<=q){
ans[query[cnt].index] = (c[query[cnt].r]^c[query[cnt].l-])^(getsum(query[cnt].r)^getsum(query[cnt].l-));//注意
cnt++;
}
}
for(int i = ;i<=q;i++)
printf("%I64d\n",ans[i]);
return ;
}

HDU 3333 | Codeforces 703D 树状数组、离散化的更多相关文章

  1. HDU 3333 Turing Tree (树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3333 题意就是询问区间不同数字的和. 比较经典的树状数组应用. //#pragma comment(l ...

  2. HDU 4325 Flowers(树状数组+离散化)

    http://acm.hdu.edu.cn/showproblem.php?pid=4325 题意:给出n个区间和m个询问,每个询问为一个x,问有多少个区间包含了x. 思路: 因为数据量比较多,所以需 ...

  3. HDU 3333 - Turing Tree (树状数组+离线处理+哈希+贪心)

    题意:给一个数组,每次查询输出区间内不重复数字的和. 这是3xian教主的题. 用前缀和的思想可以轻易求得区间的和,但是对于重复数字这点很难处理.在线很难下手,考虑离线处理. 将所有查询区间从右端点由 ...

  4. HDU 3333 Turing Tree --树状数组+离线处理

    题意:统计一段序列[L,R]的和,重复元素只算一次. 解法:容易看出在线做很难处理重复的情况,干脆全部讲查询读进来,然后将查询根据右端点排个序,然后离散化数据以后就可以操作了. 每次读入一个数,如果这 ...

  5. hdu4605 树状数组+离散化+dfs

    Magic Ball Game Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  6. BZOJ_5055_膜法师_树状数组+离散化

    BZOJ_5055_膜法师_树状数组+离散化 Description 在经历过1e9次大型战争后的宇宙中现在还剩下n个完美维度, 现在来自多元宇宙的膜法师,想偷取其中的三个维度为伟大的长者续秒, 显然 ...

  7. POJ 2299 【树状数组 离散化】

    题目链接:POJ 2299 Ultra-QuickSort Description In this problem, you have to analyze a particular sorting ...

  8. Educational Codeforces Round 10 D. Nested Segments 离线树状数组 离散化

    D. Nested Segments 题目连接: http://www.codeforces.com/contest/652/problem/D Description You are given n ...

  9. HDU 4325 Flowers 树状数组+离散化

    Flowers Problem Description As is known to all, the blooming time and duration varies between differ ...

随机推荐

  1. github

    学习github的不错的资源 http://gitref.org/zh/index.html https://wuyuans.com/2012/05/github-simple-tutorial/#t ...

  2. hibernate单表junit测试

    首先,创建java project ,导入需要的jar包 添加hibernate.cfg.xml <?xml version='1.0' encoding='UTF-8'?> <!D ...

  3. J2EE,J2SE,J2ME,JDK,SDK,JRE,JVM区别

    转自:http://www.metsky.com/archives/547.html 一.J2EE.J2SE.J2ME区别 J2EE——全称Java 2 Enterprise Edition,是Jav ...

  4. oschina(开源中国)的Git代码托管平台使用教程

    oschina(开源中国)的Git代码托管平台使用教程 第一章 平台介绍 一. Git@OSC简介 开源中国的Git@OSC一个账号最多可以创建1000个项目,包含公有和私有,开源中国代码托管地址:h ...

  5. 字符编码笔记:ASCII,Unicode和UTF-8 转

    本文出处 http://www.ruanyifeng.com/blog/2007/10/ascii_unicode_and_utf-8.html 只是为了记录一下省得要去搜. 今天中午,我突然想搞清楚 ...

  6. Go学习

    简介 Go语言是Google出了一个语言,基本概念我就不介绍了, GO语言从原生上支持高并发,并提供了简单的调用方式,我们就重点研究一下它的高并发 进程与线程 在介绍高并发之前,我们需要了解一下我们现 ...

  7. 在 JS 中使用 fetch 更加高效地进行网络请求

    在前端快速发展地过程中,为了契合更好的设计模式,产生了 fetch 框架,此文将简要介绍下 fetch 的基本使用. 我的源博客地址:http://blog.parryqiu.com/2016/03/ ...

  8. DayPilot 7.9.3373 去掉DEMO

    更新升级倒是蛮快的,多了Gantt图,此处下载先: http://files.cnblogs.com/files/pccai/DayPilot_2.0_4.0_7.9.3373.rar

  9. java 内部类与外部类的区别

    最近在看Java相关知识的时候发现Java中同时存在内部类以及非公有类概念,而且这两个类都可以不需要单独的文件编写,可以与其他类共用一个文件.现根据个人总结将两者的异同点总结如下,如有什么不当地方,欢 ...

  10. MySQL架构优化实战系列1:数据类型与索引调优全解析

    一.数据类型优化 数据类型 整数   数字类型:整数和实数 tinyint(8).smallint(16).mediuint(24).int(32).bigint(64) 数字表示对应最大存储位数,如 ...